
 1

The official most up-to-date version is found at URL
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-

calendars/

Preface .. 3
The Department ... 3
Faculty ... 5
CSAC and CEAB Accreditation ... 6
A Note on Terminology .. 6
Programs Offered by the Department .. 6
The Computer Science Program ... 7
Streams in Specialised Honours Computer Science Programs..................................... 8
The Computer Security Program ... 8
The Digital Media Program .. 9
International Programs .. 10
iBSc and iBA .. 10
The International Dual Degree BSc Specialised Honours Program 10
The Computer Engineering Program ... 12
The Software Engineering Program .. 12
The Electrical Engineering Program .. 13
Engineering and International Development Studies Dual Degree 14
Degree Requirements .. 14
Courses on Offer in 2016-17 ... 14
Admission to Programs .. 15
Computer Science and Computer Security Programs ... 15
Digital Media Program ... 15
Electrical, Computer and Software Engineering Programs ... 16
Graduate Programs in Computer Science and in Engineering 16
Professional Experience Program (PEP) ... 16
Co-operative Education Program .. 17
Out of Major Elective Courses - Computer Science and Computer Security Programs
 ... 17
The Service Program ... 17
Recent Academic Changes ... 18
Student Clubs .. 19
The Student Ombuds Service .. 20
Computer Facilities .. 20
Computer Use Policy ... 23
Awards ... 24
Academic Policies .. 25
Concerns about Fairness ... 27
Moving to New Program Requirements and New Prerequisites 27
Appeal Procedures .. 28
Grading System ... 29
Courses Offered by the Department .. 29
Course Descriptions: 1000-Level ... 31

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/

 2

General Prerequisites .. 45
Course Descriptions: 2000-Level ... 46
Course Descriptions: 3000-Level ... 54
Course Descriptions: 4000-Level ... 82
Access to Courses ... 126
Normal Order of Study ... 128
Prerequisites for all EECS Courses ... 129
Degree Program Checklists ... 138

 3

Preface
In choosing to study Computer Science, Computer Security, Digital Media, Electrical
Engineering, Computer Engineering or Software Engineering you have chosen a
career in exciting and rapidly changing disciplines. As a professional in one of these
fields, you may become involved in many of the great changes in the future, for the
computing and engineering disciplines will play a central role in these changes.

It is important, therefore, that you not only develop the applied and theoretical skills of
a professional, but that you also try to obtain an understanding of the impact of your
discipline and its tools on society. For that reason we would strongly encourage you to
select, in addition to the required courses prescribed in the programs offered by the
department, courses outside the disciplines of Computer Science or Engineering in
areas where you will broaden your knowledge of societal issues. One way to do this is
to select isolated courses that interest you; however, a more productive approach is to
consider taking a concentration of courses in a different area or possibly designing a
second major or minor in addition to your primary major—although double majoring or
major/minoring is not open in the Computer Security, Digital Media or the Engineering
Programs. While there is a large number of possible pairings to pursue in a double-
major or a major-minor with other programs, there also are some restrictions where
the two members of the pair are in the same field. Thus, for example, the pairing of
computer science and information technology is unavailable. Similarly, while there is
no harmonised senate policy regarding second degrees, it is recorded in the
University Calendar that “A student who wishes to pursue a second degree in a
different field of study must apply to the Admissions Office for admission as a second
degree candidate”.

In general, in planning your course selection, you should be thinking ahead and
asking yourself not only which technical/scientific courses will give you a good degree,
but also which courses will make you a good professional. That implies a sound
technical background, a broad education, professional ethics and a social conscience.

The Department
Electrical Engineering and Computer Science (EECS) Department

1012M Lassonde Building (LAS)
York University

4700 Keele Street
Toronto, Ontario M3J 1P3

http://eecs.lassonde.yorku.ca
Office hours: 10:00 am – 4:00 pm

(Fridays during June-August: 10:00 am – 3:00 pm)

Vice Chair (Science): Tel. (416) 736-5334
 George Tourlakis Email: ug@cse.yorku.ca

Vice Chair (Engineering): Tel: (416) 736-5334
 Robert Allison Email: ug@cse.yorku.ca

http://eecs.lassonde.yorku.ca/
http://www.cse.yorku.ca/cspeople/faculty/gt/index.html
mailto:ug@cse.yorku.ca
http://www.cse.yorku.ca/cspeople/faculty/allison/index.html
mailto:ug@cse.yorku.ca

 4

Vice Chair (Graduate): Tel. (416) 736-5053
 Franck van Breugel Email: gpd@cse.yorku.ca

Chair: Tel. (416) 736-5053
 Richard Wildes Fax: (416) 736-5872

http://www.cse.yorku.ca/cspeople/faculty/franck/index.html
mailto:gpd@cse.yorku.ca
http://www.cse.yorku.ca/cspeople/faculty/wildes/index.html

 5

Faculty
 Telephone email Telephone email
 Extension @cse.yorku.ca Extension @cse.yorku.ca

* On Sabbatical
** On Leave

Aboelaze, Mokhtar 40607 aboelaze Kyan, Matthew 33965 mkyan
Allison, Robert 20192 allison Lam, John 77872 johnlam
Amanatides, John 44782 amana Lesperance, Yves 70146 lesperan
An, Aijun 44298 aan Lian, Yong (Peter) * 44647 peterlian

Asif, Amir ** 70128 asif Litoiu, Marin 20987 mlitoiu@yor
ku.ca

Baljko, Melanie 33348 mb Ma, Burton 77885 burton
Castellucci, Steven 33947 stevenc Mackenzie, Scott * 40631 mack

Cribb, Peter * 70127 peterc Magierowski,
Sebastian 44652 magiero

Datta, Suprakash 77875 datta Mirzaian, Andy 70133 andy
Dymond, Patrick 33948 dymond Nguyen Uyen * 33274 utn
Eckford, Andrew 70152 aeckford Ostroff, Jonathan 77882 jonathan
Edmonds, Jeff 33295 jeff Pisana, Simone 77885 pisana
Elder, James * 66475 jelder Roumani, Hamzeh 66146 roumani
Faloutsos, Petros * 40630 pfal Ruppert, Eric 33979 ruppert
Farag, Hany 33844 hefarag Smith, James 33978 drsmith
Ghafar-Zadeh,
Ebrahim 44646 egz Spetsakis, Minas * 77886 minas

Godfrey, Parke 66671 godfrey Stachniak, Zbigniew 77877 zbigniew
Gotshalks, Gunnar 33350 gunnar Toptsis, Anestis ** 66675 anestis
Gryz, Jarek 70150 jarek Tourlakis, George * 66674 gt
Hofbauer, John 70125 hofbauer Tsotsos, John 70135 tsotsos
Hooshyar, Ali 33939 hooshyar Tzerpos, Vassilios 33341 bil
Hornsey, Richard * 33265 hornsey van Breugel, Franck 77880 franck
Jenkin, Michael 33162 jenkin Vlajic, Natalija 77878 vlajic
Jiang, Hui 33346 hj Wildes, Richard 40203 wildes
Jiang, Jack 33939 zmjiang Xu, Jia 77879 jxu
Kant, Mariana 70117 mkant

 6

CSAC and CEAB Accreditation
The Computer Science Accreditation Council (CSAC) has accredited all Computer
Science honours (major) programs offered by the Department that have already
graduated students. The Computer Engineering specialised honours BEng program
has already graduated students and is accredited by the Canadian Engineering
Accreditation Board (CEAB).

CSAC is an autonomous body established by the Canadian Information Processing
Society (CIPS), while the CEAB was established by Engineers Canada. The purpose
of accreditation is to identify those institutions that offer computer programs worthy of
recognition. The objectives of the accrediting bodies are:

 To formulate and maintain high educational standards for Canadian universities
offering computer, engineering and information science programs, and to assist
those institutions in planning and carrying out education programs.

 To promote and advance all phases of computer, engineering and information
science education with the aim of promoting public welfare through the
development of better educated computer professionals.

 To foster a cooperative approach to computer, engineering and information science
education between industry, government, and educators to meet the changing
needs of society.

Graduation from an accredited Computer Science Program simplifies the process of
professional certification as an Information Systems Professional of Canada or ISP.
The provinces of Ontario and Alberta recognise the ISP designation. Likewise,
accreditation from CEAB ensures that the academic requirements necessary for
registration as a professional engineer within Canada are successfully met. More
information on professional accreditation and the accreditation process can be found
on the CIPS web page at http://www.cips.ca/ and on the Engineers Canada website at
http://www.engineerscanada.ca/

A Note on Terminology
In this document, the BA or BSc degree refers to the 90-credit bachelor degree. The
BA Honours or BSc Honours degree refers to the 120-credit degree. The BEng is a
specialised honours, typically 150-credit, engineering degree.

Programs Offered by the Department
The Department offers courses towards the following programs, each of which is
described more fully below.

1. Computer Science
2. Computer Security

http://www.cips.ca/
http://www.engineerscanada.ca/

 7

3. Digital Media
4. Computer Engineering
5. Software Engineering
6. Electrical Engineering

For detailed information you are advised to first read the appropriate sections of the
York University Undergraduate Calendar (click on the related York University’s web
page http://calendars.registrar.yorku.ca). Secondly, read this supplemental Calendar,
and thirdly, see an advisor in the Department.

The Computer Science Program
Computer Science is available as a major program leading to an Honours or a
Specialised Honours (120-credit) degree. It is also available as a 90-credit Bachelor
degree. Students in an Honours or Specialised Honours degree program may also
graduate with the 90-credit degree once they have fulfilled its requirements, and then
continue to obtain their Honours degree. The degree types are: BA Honours, BSc
Honours, BA or BSc Specialised Honours, International BSc (iBSc) Honours and
International BA (iBA) Honours, and the International Dual Degree (BSc Specialised
Honours/York; BSc Bachelor/Hochschule Bonn-Rhein-Sieg).

The Honours major in Computer Science may be combined with most subjects in
each of Lassonde School of Engineering, Faculty of Liberal Arts and Professional
Studies (LA&PS) and Faculty of Science, leading to a four-year double major or
major-minor degree. Conversely, Computer Science is also available as a Minor
program, which must be combined with an Honours Major in a different discipline.

The intention of a combined program is for students to major in two subjects. In a
double major program, students complete course work up to and including the 4000-
level in each subject. In a major/minor program the minor subject generally requires
somewhat less course work than the major, and still may include courses at the 4000-
level. Such combined degrees may require students to take more than the minimum
of 120-credits in order to satisfy the honours requirements of each subject. Consult
advisors in both departments if you are planning a combined program.

In the Specialised Honours program students take more courses in computer science
and mathematics than in other programs thereby achieving a greater depth of study.
However, a breadth in education is maintained by the requirement of a significant
number (30 credits) of non-computing science oriented and non mathematics (or
statistics) courses.

The BA Honours and BSc Honours programs require 120 credits (normally completed
in four years of study), more specialization, a higher minimum performance level

http://calendars.registrar.yorku.ca/

 8

(grade-point-average of 5.00 to proceed1 — i.e., continue in the program — and to
graduate), and in some cases different courses than a BA or BSc degree.

The 90-credit BA and BSc program, normally completed in three years of study,
require a minimum grade point average of 4.00 over all courses for graduation.

The required courses in computer science and mathematics are identical in most
computer science programs in the first two years of study so that students can make
their final decision as to which program to graduate in after they have more exposure
to the discipline. Similarly, all three engineering programs offered by EECS have a
common first year so that all programs get a common strong foundation in
mathematics, computing and engineering principles, but also so that students have
the option to make an informed choice of the program they will follow from the end of
year one to graduation. All computer science programs are structured in such a way
that a student who embarks on a BA Honours or BSc Honours program can meet the
requirements for a BA or BSc Bachelor degree (90 credits) by the end of the third
year, and can at that time graduate with either a BA or BSc Bachelor degree. Only the
honours programs (with the exception of the minor) are accredited by the CSAC.

The degree requirements for the various Computer Science degree programs and
Streams, as well as for Computer Security, Digital Media, Electrical, Computer, and
Software Engineering offered by the Department are listed at the end of this calendar
(as a URL link in the case of the on-line version of this document).

Streams in Specialised Honours Computer Science Programs
The Specialised Honours programs (BA and BSc) may be taken with a specified focus
(specialization) or Stream in Software Development. The stream provides a
mechanism for recognising on your transcript this emphasis or focus in your studies. It
requires some specific 3000- and 4000–level courses (thus specifying what would
otherwise be free choices within EECS courses that you would make yourself in an
un-streamed Specialised Honours program), as well as a full year (6 credit) 4000–
level project, or “honours thesis” as it would be called in some universities. This is
EECS 4090 6.00.

The Computer Security Program
The Computer Security program is a Specialised Honours degree that may be
pursued as a BSc or a BA degree program. It focuses on understanding threats to
computer security and the techniques for combating those threats. Besides the

1 In December 2005 the Senate of York University has approved, with effective date of
implementation April 3, 2006, an amendment that allows students to “proceed on warning” if
they fail to meet the gpa of 5.0. The minimum cumulative gpa required is 4.00 between 0-23
credits; 4.25 between 24-53 credits; 4.80 between 54-83 credits; 5.00 beyond 83 credits. A similar
amendment was approved effective FW2015 for BEng degrees: students “proceed on warning”
if they fail to meet the gpa of 5.0. The minimum cumulative gpa required is 4.00 between 0-35
credits; 4.25 between 36-71 credits; 4.80 between 72-107 credits; 5.00 beyond 107 credits.

 9

foundational computer science and mathematics courses the program requires in-
depth education in areas such as computer networks, cryptography, operating
systems, database, and software engineering techniques as well as specialised
courses in computer security. In addition, a solid understanding of applied ethics,
management and operational practices, and exposure to relevant legal concepts are
important elements of the curriculum.

As a specialised honours program, computer security cannot be combined with any
other honours major or honours minor. However, the program does still require a
significant number of non-EECS and non-MATH courses to ensure a breadth of
general education.

The Digital Media Program
Digital Media or New Media are the technical methods and social practices of
communication, representation, and expression that have developed using the digital,
multimedia, and networked computer. Digital Media have transformed work in other
media (books, movies, telephones, television) as well as given rise to entirely new
media (computer games and the Internet for example).

The curriculum aims to provide a foundation in the following areas:
• The computational basis for the creation of digital media imagery and sound,

including animation and the simulation of 3D environments.
• The theoretical, artistic, aesthetic and experiential ideas that lie behind an

informed understanding of the aesthetic aspects of digital media creation
• The practice of creating digital media works that explore the ways in which

culture is produced and can be produced through technology
• The broader socio-cultural effects and the theory and research concerning

responses to and uses of digital media.

This is a multidisciplinary BA Specialised Honours degree program that consists of a
common core of courses and is structured as three distinct specialisation Streams:
Digital Media Development, Digital Media Arts and Digital Media Game Arts. A
student must choose one of the streams by the end of their first year of study.

A 90-credit Bachelor BA is also available as of fall 2016, but not as a direct entry
option. All streams involve a nearly balanced number of courses from the Department
of Electrical Engineering and Computer Science (EECS) and the School of the Arts,
Media, Performance and Design (AMPD). There are also a few courses required from
Science and Technology Studies (STS) in the Faculty of Science (FS) and a few from
the Communication Studies Program in the Faculty of Liberal Arts and Professional
Studies (LA & PS).

For more information see the URL:
 http://futurestudents.yorku.ca/program/digital-media

or the program requirements here:

http://futurestudents.yorku.ca/program/digital-media

 10

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-
supplemental-calendars/

International Programs

iBSc and iBA

The department has a strong interest and involvement in promoting opportunities for
students to study abroad. The iBSc and iBA Degree programs are structured as
honours computer science programs that contain a compulsory exchange placement
abroad of at least one full term of study. The iBSc Degree program requires 30 credits
outside the major, consisting of 12 to 18 credits in a language chosen by the student,
and another 12 to 18 credits that focus on a country or region that is compatible with
the student’s chosen language and/or consistent with an international issue that is of
interest to the student. The iBA also requires 30 credits like the iBSc above, but the
language component is set to exactly 18 credits in this degree. Students would
normally enrol in language courses relevant to their exchange placement.
For more information see the URL:
 http://clublassonde.com/project-type/computing/

Since 2003 the Department has maintained a successful International Summer
School program, mounting courses in partnership with departments in Germany,
Greece and Poland.

For more information see the URL:
http://eecs.lassonde.yorku.ca/activities/international-opportunities/

The International Dual Degree BSc Specialised Honours Program

The International Dual Degree program started in the fall 2011:

• It is an international program of study at York University, the Hochschule
Bonn-Rhein-Sieg (BRSU) and the University of Crete (UoC) that equips the
graduate with professional credentials in North America and in Europe.

• Two degrees are obtained within four years of study: The York University
BSc Specialised Honours Degree in Computer Science and the BRSU
Bachelor of Science Degree in Computer Science.

• The program includes a 1-year long study in Europe, divided between BRSU
and UoC.

In collaboration with the Departments of Computer Science in the Hochschule Bonn-
Rhein-Sieg (BRSU) and the University of Crete (UoC), the Department of Electrical
Engineering and Computer Science offers an International Dual Degree Program in
Computer Science (BSc and Specialised Honours BSc). This limited-space program

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://clublassonde.com/project-type/computing/
http://eecs.lassonde.yorku.ca/activities/international-opportunities/

 11

will be of interest to students with high academic standing as measured by a
cumulative GPA of 6.00 or higher computed over all major computer science (EECS)
courses completed among approximately 60 credits taken at York University (typically
achieved at the end of the second year of study).

Students in the program, after two years of study at York but before the completion of
the York degree requirements, will be eligible, subject to the aforementioned GPA
requirement, to continue their studies as York international exchange students in the
European Union (EU) for a full year of study. This exchange placement will be divided
between BRSU in the Fall term and UoC in the Winter term. At UoC, the students will
complete a mandatory research internship component and an undergraduate thesis
both typically taking place in the Institute of Computer Science/FORTH in Crete.
Students may, optionally, also take specialised computer science courses at UoC.

The thesis and internship activities will both be conducted in English.

Study at two universities in distinct geographic and linguistic/cultural settings adds
value to the exchange and broadens the learning experience. The program of study is
precisely regulated as dictated by the need to meet both the degree requirements of
York University and BRSU. At the end of year three (the exchange year), students who
have progressed normally will have met both the BRSU Bachelor of Science in
Informatik (equivalent to York’s BSc Bachelor 90-credit degree) requirements as well
as those of the BSc Bachelor in Computer Science (York), and may graduate with both
of these degrees from the respective institutions. York students will return and
complete a 4th year of study at York University to fulfil their BSc Specialised Honours
degree requirements and thus also graduate with the York University Specialised
Honours degree. York International administers all exchanges under this program in
collaboration with the International Offices in BRSU and UoC.

Reciprocally, BRSU students will spend a full year of study at York to conclude their
3rd year BRSU requirements by taking York University degree-specific substitute
courses. Upon successful completion of year three, these students would have met
both the BRSU and York degree requirements, and would be eligible to earn the York
BSc Bachelor degree in Computer Science (as well as the Bachelor of Science in
Informatik from their home university).

All BRSU students in this Dual Degree Program must satisfy a modified general
education requirement in lieu of the general education requirements of the Lassonde
School of Engineering, as follows: They must complete at BRSU, normally prior to
arrival at York, 18 ECTS (the equivalent of 9 York credits) of courses in English,
Microeconomics, Intercultural Communications, and Law.

Reciprocally, all York students in this Dual Degree Program must satisfy a modified
general education requirement in lieu of the current general education requirements of
the Lassonde School of Engineering, as follows: They must complete at York

 12

University 6 further non-science credits in addition to 12 credits in language and
culture courses.

The Computer Engineering Program
This is a Specialised Honours Bachelor of Engineering (BEng) Degree Program in
which students must select courses that focus on software and hardware engineering.
For example, courses in digital logic, embedded systems, signals and systems, and
computer networks are required in Computer Engineering but are optional for students
in other degree programs. Moreover, the BEng degree contains a substantial core of
engineering design courses that are only open to students in an Engineering program.

While Honours programs in Computer Science allow flexibility for students to choose
electives, the Computer Engineering program is highly specified in order to meet
accreditation requirements of the CEAB. Computer Engineering is our oldest BEng
program and is already accredited by CEAB.

As is the case with all engineering programs, the workload is very demanding. The
total number of credits (normally completed over four years of study) is 150.

For more information see also the URL: http://lassonde.yorku.ca/computer-
engineering/

The Software Engineering Program
This Specialised Honours BEng Degree Program commenced in September 2011.

▪ It is a professional degree - your entry to the engineering profession.
▪ It offers core knowledge in software engineering that closely matches IEEE-

ACM software engineering curriculum guidelines.
▪ It offers specializations in mobile communications, databases, human-

computer interfaces, security, and networks and net-centric computing.
▪ It develops teamwork, communication skills and encourages an industrial

internship.
Software Engineering applies computer science and engineering principles to the
creation, operation, and maintenance of software systems including embedded
systems (e.g. devices such as mobile phones or air traffic systems controlled by
software) ubiquitous in modern technology. Skills in Software Engineering are
increasingly in demand given the prevalence of software and its use in critical areas
involving the safety of the public and environment.

Software engineers need professional skills to develop complex mission critical
systems with design architectures that support reliability, extensibility and reusability.
Thus, software engineers must have an understanding of systematic design processes
of large-scale integrated systems including project planning, requirements analysis,
design, coding, testing, configuration management, quality assurance, and
documentation.

http://lassonde.yorku.ca/computer-engineering/
http://lassonde.yorku.ca/computer-engineering/

 13

Building on existing strengths in Computer Science and Computer Engineering, York’s
new Software Engineering program provides students with a systematic and
disciplined approach to developing mission critical software. The software engineering
curriculum at York University develops the multidisciplinary skills required by today's
software engineers—technical, mathematical, business, societal, and
communication—that really make software engineers the leaders of tomorrow. The
program develops teamwork, communication skills (via technical presentations,
reports, and peer evaluations) and encourages an industrial internship.

The first year provides students with a strong foundation in programming, applied
mathematics, and physical sciences.

During the second and third years, Software Engineering students acquire the
necessary engineering tools in mathematics, computer and engineering sciences, as
well as specialised skills in software specification, for the analysis and design of
complex mission critical systems by combining intensive classroom teaching and
laboratory education.

The fourth year of the Software Engineering curriculum is flexible to enable students to
create their own specializations by selecting from a variety of innovative courses in the
fields of net-centric computing, mobile communications, security, databases and
human-computer interfaces. Multidisciplinary skills in social sciences, business,
humanities, and communications are honed through a selection of elective courses in
complementary studies spread throughout the four years of the curriculum.

Design is a significant component of engineering and is integrated throughout the
software engineering curriculum. In addition to the standard engineering design
courses, the design of software is stressed throughout. There is a software project
course in the second year as well as a design project in the third year. The design
process culminates with a capstone engineering project in which students put their
training into practice by developing requirements, designing a suitable architecture,
building, testing and deploying a software intensive system ideally in an
interdisciplinary environment. See also http://lassonde.yorku.ca/software-engineering-
beng

The Electrical Engineering Program
This is our newest Specialised Honours BEng Degree Program that commenced in
September 2013. Electrical Engineering deals with the electrical, electronic, and
wireless infrastructure that enables our modern life. There isn’t a field or industry that
doesn’t depend on the fundamentals of Electrical Engineering – be it pharmaceutical,
medical, manufacturing, media or even entertainment. Sub disciplines of Electrical
Engineering include electronics and nanoelectronics, control systems,
telecommunications, robotics systems and biomedical instrument design. Common
across all engineering programs, the first year in Electrical Engineering provides
students with a strong foundation in programming, applied mathematics, and physical
sciences. During the second and third years, the curriculum covers advanced topics in
electronics and electrical circuits, semiconductor devices and circuits, electromagnetic

http://lassonde.yorku.ca/software-engineering-beng
http://lassonde.yorku.ca/software-engineering-beng

 14

fields and waves, power systems and energy conversion. The final year provides
students the flexibility of specializing in one of the four electrical engineering fields:
Electronics, Power, Communications and Signal Processing, and Medical and
Assistive Devices.
See also http://lassonde.yorku.ca/electrical-engineering/

Engineering and International Development Studies Dual Degree
Computer, Electrical or Software Engineering students can combine their engineering
studies with specialization in international development. Students in the engineering
and international development studies program choose one of the engineering
program streams, plus the international development studies requirements. Graduates
are awarded both BEng and BA degrees. See the university calendar for details
http://calendars.registrar.yorku.ca

Degree Requirements
Specific course requirements for the degree programs outlined above can be found in
the official University Calendar at:

http://calendars.registrar.yorku.ca

Degree requirements fall into two or three broad categories:

1. Those required for the major, i.e. computer science and mathematics
courses; and for the Digital Media degree, courses from the AMPD School
and social science courses/STS courses.

2. Those required for the second major, or minor, if the program is an Honours
Double Major or Honours Major/Minor program.

3. Courses required for General Education, breadth and diversity. These
depend on whether the degree is a BA, BSc or a BEng.

The Department also provides degree checklists that itemize the course requirements
in a succinct and clear way (hopefully!). Every effort is made to ensure the accuracy of
these checklists, however, in case of any inconsistency the official University
Calendar is to be followed. These checklists are included at the end of the hardcopy
version of this supplemental calendar and also at this link

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/

under the heading “Program Information”.

Courses on Offer in 2016-17

The course schedule for Summer 2016 and FW 2016-17 is found on the department
Undergraduate page for continuing students

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/

http://lassonde.yorku.ca/electrical-engineering/
http://calendars.registrar.yorku.ca/
http://calendars.registrar.yorku.ca/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/

 15

under the heading “Course Information—Lecture Schedules”.

Admission to Programs

Computer Science and Computer Security Programs
Please go to http://futurestudents.yorku.ca/requirements/ to find out about the various
University and Faculty level Admissions Requirements pertaining to your situation.
There are two general Admission Categories:

1. Entry with only secondary school background
Requirements under this category are detailed at
http://futurestudents.yorku.ca/requirements/highschool
Please note the Faculty-specific requirements as these pertain to your case.

2. Entry with post-secondary academic background
Please follow http://futurestudents.yorku.ca/requirements/univ_coll to find a detailed
description of general University and Faculty-specific policies for gaining admission
under this category.

In particular, current York University students who want to change their major to be, or
include, Computer Science or Computer Security will need to meet the following
minimum requirement:

 Completion of at least 24 credits with an overall cumulative grade point average
(OCGPA) of 5.00 (grade of C+) or better if transferring to the honours computer
science/computer security programs (minimum OCGPA of 4.00 (grade of C) is
needed to transfer into the Bachelor degree programs in Computer Science). 2

 Must meet either (1) the mathematics component of the published Admissions to
the Degree Program requirements completed within the last 5 years, or the
prerequisite alternatives (2) or (3) in the prerequisite of EECS1012. Qualifications
for entry cannot be mixed (entry is decided either on Admission qualifications alone,
or on one of the two alternatives above). Once courses from alternative (2) are
taken, a transfer application cannot be based on criteria (1) or (3) anymore.

Once transferred to a Computer Science Program, students will need to satisfy all
specific and general prerequisites of computer science courses they wish to take.

Digital Media Program
Admission requirements can be found at the same websites as given above. Please
go to http://futurestudents.yorku.ca/requirements/.

2 All courses listed in your York University transcript will be included in the calculation of your
cumulative grade point average.

http://futurestudents.yorku.ca/requirements/
http://futurestudents.yorku.ca/requirements/highschool
http://futurestudents.yorku.ca/requirements/univ_coll
http://futurestudents.yorku.ca/requirements/

 16

Electrical, Computer and Software Engineering Programs
Admission requirements can be found at the same websites as given above. Please
go to http://futurestudents.yorku.ca/requirements/.

Graduate Programs in Computer Science and in Engineering
Admission to the graduate program is highly competitive. The ideal preparation for
graduate studies in Computer Science or Computer Engineering is the completion of
the Specialised Honours Program in Computer Science, or in Computer Engineering,
or in an equivalent degree (that includes senior level courses in theoretical computer
science). Your grade point average in the last two years should be at least B+ to
enter the competition for admission. Of course, the higher your grades the more likely
you will be a successful candidate. For more information, please visit
http://eecs.lassonde.yorku.ca/current-students/grads-courses/

Professional Experience Program (PEP)
The Professional Experience Program offers qualified undergraduate Computer
Science, Computer Security, and Digital Media students the opportunity to take part in
an internship program that alternates academic studies with related work experience
in either the private or public sectors. There is considerable flexibility in the duration of
individual internships. The length of an internship can vary from four to sixteen months
(in quanta: 4, 8, 12 or 16). These are paid internships and, for example, computer
science/security interns typically earn a salary typical of entry-level positions in the IT
sector.

Engineering students can participate in the Co-op Program, which has similar
objectives as the PEP and allows students to participate in multiple work terms over
the course of their degree (see below).

Students in the BA Honours, BSc Honours, iBSc, iBA are eligible to apply to the PEP
in year three of their studies. Students enrolled in the Internship option are required to
enrol in EECS3900 0.00 in each term of their internship. For administrative reasons
we have separate courses, EECS3980 0.00, and DATT 3929 0.00 associated with
Internships of Computer Security and Digital Media majors.

The Internship (and Co-op) Program is administered centrally by the Lassonde School
of Engineering. Internship students receive assistance in identifying relevant and
interesting internship opportunities, formulating the employer application package and
sharpening their interview skills. Computer science and computer security students
have been placed at a wide range of companies including IBM, Blackberry, Sun
Microsystems, Platform, Workbrain, Ontario Lottery and Gaming Commission, CIBC,
Toronto Hydro, Ontario Power Generation, and Global Matrix, while past placements
of digital media students included Shore Consulting Group, IBM, RBC, and Ontario
Ministry of Government & Consumer Services.

For additional information please visit the Lassonde Co-op/PEP link
http://lassonde.yorku.ca/co-op-and-internships

http://futurestudents.yorku.ca/requirements/
http://eecs.lassonde.yorku.ca/current-students/grads-courses/
http://lassonde.yorku.ca/co-op-and-internships

 17

See also the EECS3900 0.00 and EECS3980 0.00 and FA/DATT3929 0.00
descriptions in this supplemental calendar.

Co-operative Education Program
Computer, Electrical and Software Engineering students have the opportunity to
participate in Co-op Work Terms, typically starting in the summer after second year.
There is considerable flexibility in the scheduling and duration of individual co-op
internships but a minimum of 12 months of co-op work is required. The type of
internship is also flexible with traditional, entrepreneurial, international and freelance
placements possible. During the co-op internship placement students earn a salary
typical of entry-level positions in the field. See http://lassonde.yorku.ca/co-op-and-
internships for details.

Out of Major Elective Courses - Computer Science and Computer
Security Programs
Students in Computer Science or Computer Security sometimes feel their study in this
discipline is quite isolated from the other programs in their Faculty, and place little
emphasis on their choice of courses outside the major, even though at least a quarter
of their courses are non-computer science/math. This is a mistake — computer
science supports applications in every information-using discipline. In order to make
creative and effective use of your skills in computing, you need to know much more of
the natural world, the man-made world, and the world of ideas, than can be learned in
courses in computing alone.

There are many choices for elective courses beyond computing. For example courses
in economics, philosophy (logic), psychology, linguistics, physics and chemistry, just
to name a few, whose content meshes with issues and problems studied in computer
science.

Not only should you consider taking individual courses in other disciplines but you
should also consider taking a concentration of non-major courses that together form a
coherent or complementary package. Such a concentration may come from only one
discipline (one of the sciences, for example, whose hierarchical course structure
ensures that none of the courses therein can be taken in isolation), but it may also
come from two or three disciplines on related concepts presented from different
perspectives. It will often be necessary to take specific prerequisites before you can
take a desired elective course; such combinations also form coherent concentrations.

To further emphasise the importance of elective courses outside the discipline, all
honours programs require at least 30 credits from non-“IT” and non-“MATH” courses.

The Service Program
The Department also offers a variety of courses at the 1000-level and 2000-level that
are of interest to students wanting to learn about computers and computer use without
majoring in Computer Science or Engineering. In some cases degree programs
offered by other departments may require these courses in their programs.

http://lassonde.yorku.ca/co-op-and-internships
http://lassonde.yorku.ca/co-op-and-internships

 18

At the 1000-level these courses for non-majors are:

EECS1520 3.00 Computer Use: Fundamentals
EECS1530 3.00 Computer Use: Programming
EECS1540 3.00 Computer Use for the Natural Sciences
EECS1541 3.00 Introduction to Computing for the Physical Sciences
EECS1550 3.00 Introduction to Web Development
EECS1560 3.00 Introduction to Computing for Math and Statistics
EECS1570 3.00 Introduction to Computing for Psychology

EECS1520 3.00 is an introduction to computers including their architecture, system
software, networking and other general topics as well as providing exposure to
problem solving applications such as the spreadsheet. The course EECS1530 3.00 is
an introduction to computer programming and may be taken as preparation for
EECS2501 1.00. EECS1550 3.00 is an introduction to the development of interactive
web applications. EECS1541 3.00, EECS1560 3.00 and EECS1570 3.00 are directed
towards Physics and Astronomy, MATH/Stats and Psychology majors, respectively.

Students taking the 1500 series courses are not enabled to take the 2000-level EECS
courses for majors without prior successful completion of EECS1012 3.00 (EECS1011
3.00 for BEng degree majors) and EECS1022 3.00 (EECS1021 3.00 for BEng degree
majors). Some 2000-level courses also require EECS2030 3.00. For a quick look at
the prerequisites for each EECS course please see the Prerequisites Section.

At the 2000-level the Department offers the course EECS2501 1.00, Fortran and
Scientific Computing, which covers computer-based problem solving in a variety of
scientific and engineering settings.

Recent Academic Changes
1. New Programs and Program Changes (2016/17)

• A new Stream (Digital Media Game Arts – DMGA) is added to the
Specialised Honours BA in Digital Media.

• A new Bachelor BA (not direct entry) in Digital Media has been approved to
start. The related Senate motion elaborates: This 90-credit degree is
designed specifically as a delayed-entry program for students who have
been admitted to the Digital Media Specialised Honours Bachelor of Arts
program, have completed at least 24 credits at York and, for various
reasons, are unable continue in the Honours degree.

• All Computer Science Streams, except the one for Software Development,
in Specialised Honours BA and BSc programs are discontinued effective
Fall 2016.

2. New Courses and Course Changes FW2016/17

 19

• EECS1012 3.00 (new title: Introduction to Computing: A Net-centric
Approach) and EECS 1022 3.00 (new title: Programming for Mobile
Computing) now have the same teaching format as their Engineering
counterparts EECS1011 3.00 and EECS1021 3.00: Two-hour lectures and
three-hour labs weekly.

• The title and course description of the elective course EECS1550 3.00 has
changed effective fall 2016.

• The format of EECS3311 3.00 has been changed to include scheduled labs
as of fall 2016.

• The Stream-specific courses LE/EECS 4081 6.00, 4082 6.00 and 4084 6.00
are retired.

• There have been some minor changes to the prerequisites of EECS4214
4.00, 4210 3.00 and 4452 3.00 that offer more flexibility to the students.

Student Clubs
The clubs and student organizations at Lassonde offer some fantastic opportunities
and plenty of fun alongside personal development. Please visit the Lassonde Student
Clubs website (http://lassonde.yorku.ca/student-clubs) for the complete list our clubs
and student organizations.

The Computing Students Hub (CSHub) is a group of students passionate in
computer science and technology. While CSHub represents computing students in
Computer Science, Computer Security, Digital Media, Computer Engineering and
Software Engineering, the club has members from all Faculties. CSHub offers
seminars/tutorials/workshops on a variety of topics, programming competitions,
lectures from distinguished individuals in industry, as well as social and professional
development events. Please visit their website (http://www.cshub.ca) for more details
about the club and its events.

The Digital Media Student Association (DMSA) is a group of students who offer
academic, social and career support to students within and beyond York University’s
Digital Media Program. More information about the DMSA is available on their website
at http://dmstudents.ca/.

The Lassonde Engineering Society at York, or EngSoc, represents Engineering
students on various issues relating to engineering and the university, and organises
social events and advising sessions. They can be accessed through their website at
http://engsocyu.com/.

The Robogals Chapter at York University aims to promote women in engineering
by reaching out with interactive events. Please visit their Facebook page for more
information about the chapter: https://www.facebook.com/pages/Robogals-Chapter-at-
York-University/490134204377640

http://lassonde.yorku.ca/student-clubs
http://www.cshub.ca/
http://dmstudents.ca/
http://engsocyu.com/
https://www.facebook.com/pages/Robogals-Chapter-at-York-University/490134204377640
https://www.facebook.com/pages/Robogals-Chapter-at-York-University/490134204377640

 20

The York University chapter of Engineers Without Borders —
http://www.yorku.ewb.ca — helps people in developing communities gain access to
the technology they need to improve their lives. In the past, EWB@York repaired
Pentium-based computers and shipped them to Iraq for female NGOs. Summer
Internships include three international and one local placement.

The York University Rover Team (YURT). From their Profile page,
http://roverteam.cs.yorku.ca/about.html
“YURT is a group of enthusiastic undergraduate and graduate students from a wide
array of disciplines who advanced rover prototypes to compete in NASA's Lunabotics
Mining Competition and Mars Society’s University Rover Challenge…YURT is a two-
time winner at the University Rover Challenge and placed first at the 2012 Canadian
Innovation Nation Robotics Competition.” YURT's credo is that “solving technological
hurdles of today will lead to a better tomorrow.” Contact: info@yuroverteam.com or
drop by at Room 002 in Petrie Building (basement level) to join.

The Women in Computer Science and Engineering (WiCSE) supports and
promotes women in Computer Science and in Engineering. The objectives of WiCSE
include: (i) providing a support network for female computer science and engineering
students; (ii) implementing a mentoring program to assist them in the preparation of
applications for scholarships, bursaries and summer jobs, providing guidance in career
development and post graduate education; and (iii) improving the "climate" for women
and help student attraction and retention. They can be contacted through their website
http://www.cse.yorku.ca/WiCSE/welcome.html.

The Student Ombuds Service
The Student Ombuds Service (SOS) is a peer-advising service designed to help York
students find university-related information that they need. The SOS office is staffed
with knowledgeable upper-level students and serves as a resource centre and the hub
of a referral network, assisting students to find answers to any questions about York
University policies and procedures, giving general academic help, and advice about
University life. SOS resources include departmental mini-calendars, graduate and
professional school information, a tutor registry, and a study group registry. The SOS
office is located in 208 Bethune College and has drop-in hours between 10:00 a.m.
and 4:00 p.m., Monday to Friday. No appointment is necessary. SOS can also be
reached on the web: http://www.yorku.ca/sos.

Computer Facilities
Undergraduate students who are registered to EECS courses use the Department of
Electrical Engineering and Computer Science undergraduate computing laboratories.
The majority of students are granted an authorised account through which they store
or print their course work related files, create personal or course web sites. Students
access the Unix or Windows workstations in the laboratories through scheduled
sessions or first come first serve basis. The accounts can also be accessed remotely
through the Internet via secure connection, or from other designated laboratories on

http://www.yorku.ewb.ca/
http://roverteam.cs.yorku.ca/about.html
mailto:info@yuroverteam.com
http://www.cse.yorku.ca/WiCSE/welcome.html
http://www.yorku.ca/sos

 21

campus. Select laboratories are equipped with printing facilities. First year
engineering students use a dedicated Computing Laboratory to learn about concepts
of computing within a heavily equipped experimentation environment. Senior students
use a variety of specialty laboratories. These include the Generalized Signal
Processing, the Digital Systems, the Wave and Power Engineering, the Electronics,
the Medical Devices, the Software Engineering, the Networking and Computer
Security, the Integrated Signal Processing and Multi-Media, and the Virtual Reality
Laboratories.

 The Generalized Signal Processing Laboratory incorporates Robotics, Vision and
Virtual Reality Laboratories. It consists of two CRS robot arms, an autonomous
mobile robot, workstations equipped with multimedia hardware including monocular
and stereo video cameras and audio facilities. The Virtual Reality supports the study
of modern virtual reality systems with a variety of specialised hardware displays and
tracking devices including a large screen passive stereoscopic display, Phantom
Omni haptic devices, immersive audio displays, two head mounted displays and a
number of magnetic and inertial motion tracking devices.

 The Digital and Embedded Systems Laboratory provides hands-on experience in
digital logic design connecting discrete components such as gates, flip-flops and
registers on integrated circuit chips. Students are also exposed to design on FPGA
boards using hardware description languages. It consists of Windows workstations,
embedded microcontroller boards, logic analysers, oscilloscopes and other
electronic test equipment to provide students with hands-on experience on design
and implementation of digital and embedded systems.

 The Software Engineering Laboratory consists of a project meeting area and a work
area with Unix and Windows workstations equipped with modern software
development tools to provide students experience with various phases of the
software development life cycle such as requirements, analysis and design,
implementation, testing, delivery, and maintenance.

 The Electronics Teaching Laboratory consists of state of the art tools and electronic
measurement equipment for physical systems electronics applications (computing
and digital communications systems and applications such as low-level component
design for analog circuit, microwave circuit/device, semiconductor device/sensor,
electromagnetic) to support to electrical engineering curriculum and provide
students a unique opportunity to gain experience with more advanced equipment
not only in a standard class-based setting, but as part of their own project-based
learning experience. The electronics teaching lab serves as a general educational
laboratory space for a large number of courses in physical and systems electronics.
It provides basic equipment for the execution of labs and projects which, for upper-
year courses are augmented by the broader array of test and characterization
hardware available in the Analog Support Laboratory which includes semiconductor
devices and sensors, integrated circuits, signal conditioners and instrumentation,
electromagnetics and antennas, electro-optics, analog communications and remote
sensing and outfit to support a broad range of operating signals (DC to 67 GHz, nV

 22

to 60 V, pA to 10 A) and test-methods (time-based, frequency-based, network
parameters, linearity, noise, parametric) and Digital Support Laboratory which
provide resources for our students to learn sophisticated concepts in their upper-
year courses through access to high-tech devices and to further apply these lessons
as part of course or capstone projects or even their own entrepreneurial pursuits.
As a foundational topic for the field of electrical engineering, the subject areas and
hence the courses supported by DSL are very broad and include digital logic
design, embedded electronics, computer architectures, very-large-scale-integration,
internet-of-things, digital and wireless communications.

 The Medical Devices and Integrated Signal Processing Laboratory consist of a
number of advanced data acquisition and analysis life science research platform to
provide signals and physiological measurements and analysis of ECG, EEG, EGG,
EMG, EOG etc. The laboratory is complemented by inverted microscopes, MRI and
Ultrasound devices, electrochemical and electrophysiological devices for the
support of medical devices courses. Laboratory is an advanced undergraduate
laboratory offering the students a great opportunity to design implement and test
medical devices and biological instrumentation. The support laboratory is dedicated
(1) to the preparation of cellular and molecular biological samples and (2) to the test
and characterization of biological samples micro-fluidic, BioMEMS devices taught to
the undergraduate students. This laboratory is dedicated to culture the neuronal
cells or small animals using a variety of equipment including the incubators,
refrigerators, etc.

 The Power Systems Teaching Laboratory (PSTL) serves as a unique educational
laboratory space for a large number of upper-year courses in power engineering
and energy systems. This laboratory will provide a great learning environment for
students to develop hands-on skills and practical experience in various aspects
related to power systems engineering. Students will have the opportunities to use
the unique power measurement tools and power system workstations to design,
implement and test different types of power circuits, electric machines, and to study
the behaviour of distributed power networks for renewable energy applications.

 The Networking and Computer Security Laboratory consists of Windows
workstations equipped with specialised software tools and hardware equipment for
networking and computer security courses.

 The Attack Laboratory is an Internet-accessible, IP traffic-isolated, virtual lab that
allows students to experiment with network configuration, security vulnerabilities,
and malware without the risk of infecting the campus network. Students can have
administrator privileges and work on complex network topologies, something not
possible in a physical laboratory.

 The Digital Media Laboratory consists of workstations equipped with video capturing
devices and software suites that are tailored to the development of interactive,
media-rich applications. This includes various compilers and development
environments (e.g., Java, Python, Cycling 74’s Max/MSP, Eclipse) as well as video-

 23

and image-, and audio-manipulation suites. The laboratory is used for classroom
instruction, tutorials, student work, and student evaluation (in-lab tests).

All computers in the Department are connected to the campus network backbone,
providing access to all significant systems and services in the University, as well as
computers around the world via the Internet. All laboratories have access points to
provide wireless Internet access resources.

Computer Use Policy
Working in a laboratory environment requires cooperative behaviour that does not
harm other students by making any part of the Department’s computer systems
unusable such as locking out terminals, running processes that require lots of network
traffic (such as playing games on multiple terminals), or using the facilities to work on
tasks that are not related to course work. Essentially, all users of common facilities
need to ask themselves whether or not their behaviour adversely affects other users
of the facility and to refrain from engaging in "adverse behaviour". Good manners,
moderation and consideration for others are expected from all users. Adverse
behaviour includes such things as excessive noise, occupying more space than
appropriate, harassment of others, creating a hostile environment and the displaying
of graphics of questionable taste. Lab monitors are authorised to ensure that no
discomfort is caused by such practices to any user.

The Department policy on computer use prohibits attempting to break into someone
else's account, causing damage by invading the system or abusing equipment, using
electronic mail or file transfer of abusive or offensive materials, or otherwise violating
system security or usage guidelines. As well, we expect you to follow Senate policies
(please follow the link on the related Senate Policy

 http://www.yorku.ca/secretariat/policies/document.php?document=77)

The Department computer system coordinator, in conjunction with the Department
and York Computing Services, will investigate any suspected violation of these
guidelines and will decide on appropriate penalties. Users identified as violating these
guidelines may have to make monetary restitution and may have their computing
privileges suspended indefinitely. This could result in your being unable to complete
courses, and a change in your major.

Adverse behaviour may also violate University, Provincial and Federal laws; for
example duplication of copyrighted material and theft of computer services are both
criminal offences. In such cases the University, Provincial or Federal authorities may
act independently of the Department. The police may be asked to investigate and
perpetrators may be liable for civil and/or criminal prosecution. The Department does
not assume any liability for damages caused by such activities.

http://www.yorku.ca/secretariat/policies/document.php?document=77

 24

Awards
Unless otherwise stipulated, students in the Lassonde School of Engineering are
eligible for these awards. The Department maintains plaques commemorating the
achievement awards.

Computer Science Academic Achievement Award
Up to four cash awards are presented annually, one for each of the four years of
study, to Honours degree students who are majoring in any of the programs offered
by the Department and achieved the highest cumulative standing. These awards are
funded by contributions from the Department and are the following:

• Marvin Mandelbaum Academic Achievement Medal: awarded annually in
recognition of outstanding academic achievement in 1st year and enrolled in an
Honours Degree program majoring in any of the programs offered by the
Department of Electrical Engineering and Computer Science.

• Michael McNamee Academic Achievement Medal: awarded annually in recognition
of outstanding academic achievement in 2nd year and enrolled in an Honours
Degree program majoring in any of the programs offered by the Department of
Electrical Engineering and Computer Science.

• Anthony Wallis Academic Achievement Medal: awarded annually in recognition of
outstanding academic achievement in 3rd year and enrolled in an Honours Degree
program majoring in any of the programs offered by the Department of Electrical
Engineering and Computer Science.

• James Mason Academic Achievement Medal: awarded annually in recognition of
outstanding academic achievement in 4th year and enrolled in an Honours Degree
program majoring in any of the programs offered by the Department of Electrical
Engineering and Computer Science.

Other Awards
 Students in the Department are encouraged to apply for Summer awards such as

the NSERC Undergraduate Summer Research Award. These awards pay students
a salary over the summer while they are working on a research project under the
supervision of a faculty member. Normally students who have completed at least
their 2nd year may apply and typically a grade point average of at least 7.00 (B+) is
required. In addition, faculty members sometimes employ undergraduate research
assistants over the summer period. Such positions are only offered to the students
in the Department with the highest academic standing and demonstrated promise in
research and to a very small number of external applicants of similar qualifications.
For more information refer to: http://eecs.lassonde.yorku.ca/activities/usra/

 There are many additional awards, bursaries and scholarships on offer to fund your
studies at the Lassonde School of Engineering. For further details on these
opportunities, please consult the following website: http://lassonde.yorku.ca/awards-
bursaries-scholarships.

http://eecs.lassonde.yorku.ca/activities/usra/
http://lassonde.yorku.ca/awards-bursaries-scholarships
http://lassonde.yorku.ca/awards-bursaries-scholarships

 25

Awards Administered by Student Financial Services
The awards listed below highlight a sampling of those available to students in the
Lassonde School of Engineering. Students are encouraged to consult the Student
Financial Services’ website (http://sfs.yorku.ca/scholarships/) for a comprehensive list
of available scholarships, bursaries and awards. Specific details regarding eligibility,
criteria and the application process are also available on the website.

 CGI Award – available to undergraduate students majoring in computer science or
information technology who have a minimum cumulative grade point average of
6.00 (B).

 Charma Mordido Figuracion Bursary – awarded annually to a female computer
science major.

 GM Bursary for Undergraduate Students in Computer Science – available to
undergraduate students in computer science, administered by Student Financial
Services.

 Hany Salama Bursary – a cross-Faculty bursary available to ITEC, MATH and
EECS students who have completed a minimum of 30 credits.

 Mary Stevens Memorial Bursary – a bursary awarded to a mature student (21 years
or older) majoring in computer science that has recently completed 24 credits at
York University and maintained a 5.00 (C+) or higher average.

 Sally Murray Findley Memorial Scholarship – a cross-Faculty scholarship available
to ITEC, MATH and EECS students who have completed at least 48 credits
including at least 18 credits in the major with a minimum GPA of 7.00 (B+).

Academic Policies
Advising
General Academic advising is available on an individual basis in the Lassonde
Student Welcome and Support Centre in 105 Bergeron Centre for Engineering
Excellence (BCEE). Individual advising is available to students in order to discuss
academic issues such as recommended mathematical skills, theoretical versus
applications oriented courses, areas of specialization, graduate studies and career
paths, course choice, assistance with degree program checklists and requirements.
Specialised Advising regarding the six degree programs offered by EECS is available
in EECS in LAS 1012M, 1003 H (normally by appointment with the Vice Chair
Science) and 1003 J (normally by appointment with the Vice Chair Engineering). This
in-department advising may involve discussion and follow-up on unfavourable degree
audits received by students from the Registrar’s Office, special permissions, as well
as elaboration on actions taken by the department (approvals for
major/degree/Faculty transfers, results of the Waiting List exercise, results of the
prerequisites audit exercise).

It is ultimately the responsibility of each student to ensure that they meet all degree
requirement aspects at the Department (major or minor requirements) level as well as

http://sfs.yorku.ca/scholarships/

 26

at the home Faculty (i.e., Lassonde School of Engineering) and Degree levels. 3
Written information and program checklists are provided to assist students in making
appropriate choices. It is recommended that students take advantage of advising
opportunities to receive answers to any questions they may have.

Individual advising appointments to meet with the undergraduate Vice Chairs are
made through the Undergraduate Office (ug@cse.yorku.ca, Tel: (416) 736-5334).

Academic Honesty
The University Senate, the Lassonde School of Engineering and the Department have
policies on academic honesty and their enforcement is taken very seriously.
Academic honesty is essentially giving credit where credit is due. When a student
submits a piece of work it is expected that all unquoted and unacknowledged ideas
(except for common knowledge) and text are original to the student. Unacknowledged
and unquoted text, diagrams, etc., which are not original to the student, and which the
student presents as their own work is academic dishonesty. The deliberate
presentation of part of another student's program text or other work as your own
without acknowledgment is academically dishonest, and renders the student liable to
the disciplinary procedures instituted by Senate.

The above statement does not imply that students must work, study and learn in
isolation. The Department encourages students to work, study and learn together,
and to use the work of others as found in books, journal articles, electronic news and
private conversations. In fact, most pieces of work are enhanced when relevant
outside material is introduced. Thus, faculty members expect to see quotes,
references and citations to the work of others. This shows the student is seeking out
knowledge, integrating it with their work, and perhaps more significantly, reducing
some of the drudgery in producing a piece of work.

As long as appropriate citation and notice is given, students cannot be accused of
academic dishonesty.

A piece of work, however, may receive a low grade because it does not contain a
sufficient amount of original work. In each course, instructors describe their
expectations regarding cooperative work and define the boundary of what is
acceptable cooperation and what is unacceptable. When in doubt, it is the student’s
responsibility to seek clarification from the instructor. Instructors evaluate each piece
of work in the context of their course and given instructions.

You should refer to the appropriate sections of the York University Undergraduate
Calendar http://calendars.registrar.yorku.ca and Senate policies

http://www.yorku.ca/secretariat/policies/document.php?document=69
for further information and the penalties when academic dishonesty occurs.

3 The BSc and BA degrees follow university-wide standards.

mailto:ug@cse.yorku.ca
http://calendars.registrar.yorku.ca/
http://www.yorku.ca/secretariat/policies/document.php?document=69

 27

Concerns about Fairness
The Department's faculty members are committed to treating all students fairly,
professionally, and without discrimination on non-academic grounds including a
student’s race or sex. Students who have concerns about fair treatment are
encouraged to discuss the matter with their instructor or the course coordinator, if
applicable (e.g., EECS1520 3.00). If this is not possible or does not resolve the
problem, the matter should be brought to the attention of the Undergraduate Director,
and if necessary, the Department Chair, for a departmental response.

Moving to New Program Requirements and New Prerequisites
Computer Science and Engineering disciplines constantly respond and adapt to
technological and theoretical progress. To ensure that our students graduate with
current degree programs that are informed by the latest advances in the field, the
Department has determined the following principles governing the applicability of new
degree requirements for Computer Science programs:
 If you have been taking courses in consecutive years, then the starting year in a

computer science (computer security, digital media) major is the year in which you
take your first major EECS course as a Computer Science (or Computer Security or
Digital Media) major. This year normally coincides with the year you were admitted
into the program, unless you delayed taking major courses. If you have a break of
three or more consecutive terms in your studies—or you have changed your
program—then your starting year is redefined to be the year in which you start
taking major EECS courses once you come back, respectively, the year in which
you changed your program. Since most Senate approved degree program
regulations become effective in the fall term following their approval, your starting
year is the current academic year if you start in the fall, winter, or the immediately
following summer terms. For example: starting in fall 2001 you follow the 2001-02
program requirements; starting in winter 2002 or summer 2002 you also follow the
2001-02 program requirements.

 If program requirements change but you did not have either interruption in your
studies—or program changes—then you may continue with your studies using the
program requirements in effect in your starting year. In this case the degree
checklists in this calendar may not apply to you. You should use the degree
checklists applicable to your starting year. You may find these at this link:
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-
supplemental-calendars/

 If program requirements change you may elect to graduate under the new
requirements—that is, those in effect in the year of your graduation—but you must
meet all of them. You are not permitted to mix and match old and new
requirements, or to pick and choose from among various requirements that were in
effect between your starting year and graduation year.

 Changes in prerequisites to courses or to groups of courses are not changes in
degree requirements, and apply to all students regardless of their year of entry
or re-entry to the program. In fact being “course-based” rather than “degree-

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/

 28

based” requirements, prerequisites apply to majors and non-majors alike.
Prerequisite changes normally are effective starting with the term immediately
following their approval by Faculty Council.

Appeal Procedures
The Department expects a student's disagreement with an evaluation of an item of
course work (e.g., final examination, assignment report, class test, oral presentation,
laboratory presentation, class participation) to be settled with the instructor informally,
amicably and expeditiously.

If however a formal appeal becomes necessary due to lack of an informal settlement,
then there are distinct procedures to follow for term work on one hand and for final
examinations and final grades on the other. Of necessity, a formal appeal must
involve only written work.

Term Work
An appeal against a grade assigned to an item of term work must be made to the
instructor within 14 days of the grade being made available to the class.
In the case of a multi-sectioned course (where the instructor is not the course
director), a second appeal may be made to the course director within 14 days of the
decision of the instructor.
If a student feels that their work has not been fairly reappraised by the course director,
then they may appeal for a reappraisal by the Departmental petitions committee.
Such a request is made in writing using the appropriate form obtained from the
Undergraduate Office. The request must be made within 14 days of the decision of
the course director.

Final Exams and Final Grades
An appeal for reappraisal of a final grade must be made in writing on a the appropriate
Departmental form, obtained from the Undergraduate Office, within 21 days of
receiving notification of the grade or by the date set by the Registrar’s Office.

For more details on the University’s reappraisal policies see
http://www.registrar.yorku.ca/grades/reappraisal/

The Departmental petitions committee will discuss the appeal with the course director
to ensure that no grade computation, clerical or similar errors have been made. If
such an error is discovered, a correction will be made and the student and the
Registrar's Office will be notified.

If a final examination is to be reappraised then the Departmental petitions committee
will select a second reader for the examination paper. The petitions committee will
consider the report of the second reader and recommend a final grade, which may be
lower, the same, or higher than the original grade. The student will receive the report

http://www.registrar.yorku.ca/grades/reappraisal/

 29

of the petitions committee in writing and the Registrar's Office will be informed of any
grade change. The decision of the Department Petitions Committee can only be
appealed on procedural grounds to the Petitions Committee of the Faculty.

Grading System
Grading at York University is done on a letter scale. See
http://www.yorku.ca/secretariat/policies/document.php?document=87

 The following table shows the grading scale used. The number in parenthesis is the
grade point that is used to determine the grade point average. The grade point
average is a credit weighted average of all relevant courses.
 A+. 9. Exceptional. Thorough knowledge of concepts and/or techniques and

exceptional skill or great originality in the use of those concepts, techniques in
satisfying the requirements of an assignment or course.

 A. 8. Excellent. Thorough knowledge of concepts and/or techniques with a high
degree of skill and/or some elements of originality in satisfying the requirements of
an assignment or course.

 B+. 7. Very Good. Thorough knowledge of concepts and/or techniques with a fairly
high degree of skill in the use of those concepts, techniques in satisfying the
requirements of an assignment or course.

 B. 6. Good. Good level of knowledge of concepts and/or techniques together with
considerable skill in using them to satisfy the requirements of an assignment or
course.

 C+. 5. Competent. Acceptable level of knowledge of concepts and/or techniques
together with considerable skill in using them to satisfy the requirements of an
assignment or course.

 C. 4. Fairly Competent. Acceptable level of knowledge of concepts and/or
techniques together with some skill in using them to satisfy the requirements of an
assignment or course.

 D+. 3. Passing. Slightly better than minimal knowledge of required concepts and/or
techniques together with some ability to use them in satisfying the requirements of
an assignment or course.

 D. 2. Barely Passing. Minimum knowledge of concepts and/or techniques needed
to satisfy the requirements of an assignment or course.

 E. 1. Marginally Failing.
 F. 0. Failing.

Courses Offered by the Department

Prerequisites
Almost all courses have prerequisites. These are carefully considered in order to
provide accurate information to students about what background they need to have
before taking the course.

http://www.yorku.ca/secretariat/policies/document.php?document=87

 30

Prerequisites are enforced in every term via a prerequisite audit process undertaken
by the Undergraduate Office. Independently of their major, students who are
identified during the audit as being enrolled in EECS courses for which they do not
meet the prerequisite will be de-enrolled and notified by email. This prerequisite
auditing process starts as early as possible after the start of each term and,
depending on Undergraduate Office workload, may continue up to the end of the sixth
week of the term.

Prerequisites may include both specific courses and, at the 2000-, 3000- and 4000-
levels, also the requirement of a cumulative GPA of 4.5 or higher computed over
all EECS major courses. “General Prerequisites” is a term used to describe
prerequisites that apply to (almost) every course at a particular level.

Associated Course Fees
All courses have an associated fee of $10.00, with the following exceptions: The
courses associated with the Professional Experience Program, namely, EECS3900
0.00, EECS3980 0.00 and FA/DATT3929 0.00 have a fee of $475.00.

The cost of these fees is reviewed from year to year and adjusted accordingly.

Course Weights
Courses normally meet for three class hours a week for one term (these are 3-credit
courses whose numbers end in "3.00"). Some courses have required supervised labs
every week (e.g., EECS1011 3.00 and EECS1022 3.00). Catalogue numbers are
assigned to the labs rather than the lectures and students use the Registration and
Enrolment Module (REM) to enrol by selecting an appropriate lab. Other courses have
a similar registration system and lab requirements, but the associated labs are of
sufficient duration per week to entail a 4.00-credit weight for the course (e.g.,
EECS2021, 2602, 3201, and all 36xx and 46xx courses have a 4.00-credit weight).
Some of the 3.00-credit courses at the 2000 and 3000 levels have optional tutorials
while some others have mandatory tutorials. All EECS courses put heavy demands on
the student’s time by requiring the completion of take-home assignments or projects.

Service Courses
This nomenclature applies to courses that the department mounts for the degree
program needs of other majors, e.g., Mathematics and Statistics, Psychology, Biology,
Physics, Chemistry, etc. We identify such courses by assigning them a second digit 5
(e.g. 1520, 1530, 1540, 1541, 1550, 1560, 1570, 2501). These can be taken as
electives in the major programs offered by the department but not as major EECS
credits.4 The grades from such courses are not included in calculating the “EECS

4 There is an exception to this: The 2013 EE cohort was required to take EECS 1541 3.00 and as a
result, for this cohort only, we count this course as a major course and include the grade obtained
in the computation of the EECS gpa.

 31

grade point average” that the general prerequisites speak of (see above under the
“prerequisites” heading).

Course Descriptions: 1000-Level
Note. A comma or a semicolon in a prerequisite list are synonymous with “and”.

EECS 1001 1.00 Research Directions in Computing
Computer Science is an exciting and wide-ranging discipline, many of whose topics
will not be introduced in any technical depth until upper year courses (if at all). This
course consists of a set of invited lectures by researchers in the department and a set
of other organised events that will introduce the students to the breadth of computer
science.

The course is organised around a series of invited talks by individual researchers and
research groups, as well as a number of laboratory tours and other events that will
introduce students to specific research directions in computer science, issues related
to professionalism and professional societies, and opportunities to become engaged in
different research and technical groups and events related to computer science.

Formally, the course will consist of 12 one-hour lectures spread over two terms. The
first lecture will be organizational in nature. The remaining 11 lectures will be
comprised by invited lectures by researchers (or research groups) in computer
science, representatives of specific interest groups associated with computer science
(e.g., Engineers Without Borders, Canadian Information Processing Society, etc.),
work-study/internship/student exchange programs, and representatives of
volunteer/other organizations that seek out technically literate students as volunteers.

In addition to these 12 formal lectures, a set of other extracurricular events will also be
organised including research lab tours, visits to local industrial sites (e.g., IBM), special
lectures directed at specific technical problems often encountered by students (e.g.,
running LINUX at home), etc.

This course is offered on a pass-fail basis only.

Note. Computer Science and Computer Security Majors are expected to complete this
course in their first year of study.

EECS 1011 3.00 Computational Thinking through Mechatronics
The objectives of this course are threefold: providing a first exposure to procedural
programming, teaching students a set of soft computing skills (such as reasoning
about algorithms, tracing programs, test-driven development), and demonstrating how
computers are used in a variety of engineering disciplines. It uses problem-based
pedagogy to expose the underlying concepts and an experiential laboratory to
implement them. An integrated computing environment (such as MATLAB) is used so

 32

that students can pick up key programming concepts (such as variables and control
flow) without being exposed to complex or abstract constructs. The problems are
chosen in consultation with the various engineering disciplines in the Faculty with a
view of exposing how computing is used in these disciplines. The lectures (two hours
weekly) are supplemented by a three-hour weekly lab.

Main Topics
1. The Computing Environment: Workspace, built-in commands, the debugger, unit

testing, plots, etc.

2. Variables and Expressions: Types, operators, precedence, roundoff errors

3. Control Structures: Selection and Iteration

4. Encapsulation: Script files and functions

5. Computational Thinking: Process-based problem solving, unit tests as
specification

Soft Computing Skills
1. Reasoning about algorithms

2. Tracing program

3. Test-driven Development

Applications

1. General Science and Mathematics

2. Engineering applications derived from the various engineering programs in the
Faculty.

Learning Outcomes for the course:

By the end of the course, the students will be able to:
 Use a set of soft computing skills such as reasoning about algorithms, tracing

programs, and test-driven development for programming applications.
 Explain and apply the fundamental constructs in procedural programming,

including variables and expressions, control structures (conditionals/loops),
and documentation.

 Write simple programs using functions defined in m-files.
 Use the computing environment to implement/simulate selected applications

from science, math, and engineering.

Prerequisites: None
Course Credit Exclusions:5 EECS1541 3.00

5 Two courses are “Course Credit Exclusions”, or CCE, if they have such degree of overlap that they cannot
both count for credit. By Senate policy it is the chronologically 2nd of the two that counts, the first flagged

 33

EECS 1012 3.00 Introduction to Computing: A Net-centric Approach
The objectives of EECS 1012 are threefold: providing a first exposure to event-driven
programming, teaching students a set of computing skills (including reasoning about
algorithms, tracing programs, test-driven development, unit testing), and providing an
introduction to computing within a mobile, net-centric context. It uses problem-based
approach to expose the underlying concepts and an experiential laboratory to
implement them. A mature mobile software infrastructure (such as HTML, CSS, and
JavaScript) is used so that students can pick up key programming concepts (such as
variables and control flow) within a client-server context without being bogged down in
complex or abstract constructs. Laboratory exercises expose students to a range of
real-world problems with a view of motivating computational thinking and grounding
the material covered in lecture. The lectures (two hours weekly) are supplemented by
a three-hour weekly lab.

The detailed content is shown below:

Foundation

• Structuring documents and information (e.g., HTML)

• Networking basics

• Databases and SQL

Programming Basics

• Variables and expressions

• Control structures

• Functions and objects

• Testing and debugging

Client-side Technologies

• CSS

• DOM

• Event-driven programming

Net-Centric Computing

• Client-server architecture

• Server-side programming

• Mobile programming

“NCR” (no credit retained). CCE does not imply that one course is acceptable in lieu of the other in degree
requirements.

 34

Learning Outcomes for the course:
By the end of the course, the students will be able to:

 Use a set of computing skills such as reasoning about algorithms, tracing
programs, test-driven development, and diagnosing faults.

 Explain and apply fundamental constructs in event-driven programs, including
variables and expressions, control structures (conditionals/loops), and API
usage.

 Write simple programs using a given software infrastructure, API, and tool
chain.

 Gain exposure to net-centric computing, client-server applications, and simple
relational database use.

 Become familiar with the notion of syntax, both for programs and documents,
and the principle of separation of concerns.

Prerequisites: One of (1)—(3) below must be met:

(1) (New high school curriculum): One 4U Math course with a grade of at least
75%;

(2) Completion of 6.00 credits from York University MATH courses (not
including courses with second digit 5) with a grade point average of 5.00
(C+) or better over these credits;

(3) Completion of 6.00 credits from York University mathematics courses whose
second digit is 5, with an average grade not below 7.00 (B+).

Course Credit Exclusions: AP/ITEC3020 3.00, SC/CSE2041 3.00, LE/SC/CSE2041
4.00, LE/EECS2041 4.00.

EECS 1019 3.00 Discrete Mathematics for Computer Science
(Cross-listed with MATH 1019 3.00)
Introduction to abstraction; use and development of precise formulations of
mathematical ideas; informal introduction to logic; introduction to naïve set theory;
induction; relations and functions; big-O notation; recursive definitions, recurrence
relations and their solutions; graphs and trees. The detailed list of topics includes
1. Proof techniques (without using a formal system)

proof by contradiction
proof by cases
proving implications
proving statements with quantifiers
mathematical induction on natural numbers

2. Naïve set theory
proving that one set is a subset of another
proving equality of two sets
basic operations on sets (union, intersection, Cartesian product, power sets, etc.)

 35

cardinality of sets (finite and infinite)
strings

3. Functions and relations
review of basic definitions (relation, function, domain, range,
functions, 1-1 correspondence, function composition, closures of relations, etc.)
equivalence relations

4. Asymptotic notation
big-O, big- , big- notation
proving f is in O(g), proving f is not in O(g)
classifying functions into a hierarchy of important classes, e.g.,

5. Recursive definitions and solving recurrences
recursive definitions of mathematical objects
solving simple recurrences
bounding divide-and-conquer recurrences of the form
 , for constants and .
using structural induction on recursively defined objects

6. Sums
summation notation
computing and bounding simple sums

7. Elementary graph theory
basic definitions of graphs
proving simple facts about graphs
trees

Prerequisites: SC/MATH1190 3.00, or two 4U courses including MHF4U (Advanced
Functions)

Course Credit Exclusions: SC/MATH2320 3.00, LE/EECS1028 3.00, SC/MATH1028
3.00

EECS 1021 3.00 Object Oriented Programming from Sensors to Actuators
The objective of this course is to introduce computational thinking—a process-based
approach—to problem solving. It uses a problem-based pedagogy to expose the
underlying concepts and an experiential laboratory to implement them. The
programming language is chosen so that it is widely used in a variety of applications,
is object-oriented, and is of industrial strength (Java is an example of such a
language). The problems are chosen in order to expose abstract programming
concepts by immersing them in relevant and engaging applications. The experiential
laboratory is based on sensors and actuators that connect to a computer. The
problems are chosen in consultation with the various engineering disciplines in the
Faculty with a view of exposing how computing is used in these disciplines. The two
hours of weekly lectures are complemented by three-hour long weekly labs.

The lab hardware is chosen so that it can interface with a variety of languages
(including MATLAB and Java).

 36

Learning Outcomes for the course:
By the end of the course, the students will be able to:

 Demonstrate the ability to test and debug a given program and reason about
its correctness.

 Given a problem specification and a suitable API, build an application that
meets the given requirement.

 Use ready-made collections to solve problems involving aggregations of typed
data.

 Build an event-driven application that controls sensors and actuators in order
to connect events to physical actions.

 Program common applications from a variety of engineering disciplines using
an object oriented language and solve them on the computer.

Prerequisites: LE/EECS1011 3.00
Course Credit Exclusions: LE/EECS1022 3.00, LE/EECS1020 3.00, LE/CSE1020
3.00, AK/AS/SC/CSE1020 3.00, AP/ITEC1620 3.00

EECS 1022 3.00 Programming for Mobile Computing
This course provides a first exposure to object-oriented programming and enhances
student understanding of key computing skills such as reasoning about algorithms,
designing user interfaces, and working with software tools. It uses problem-based
approach to expose the underlying concepts and an experiential laboratory to
implement them. A mature mobile software infrastructure (such as Java and the
Android programming environment) is used to expose and provide context to the
underlying ideas. Laboratory exercises expose students to a range of real-world
problems with a view of motivating computational thinking and grounding the material
covered in lectures. The lectures (two hours weekly) are supplemented by a three-
hour weekly lab.

Object-Oriented Programming

• Primitive types
• Classes and objects
• Control structures
• Collections

Mobile Computing
• User interface elements and XML
• Layouts and Themes
• Activities and Intents
• Event Handlers

Learning Outcomes for the course:
By the end of the course, the students will be able to:

 37

• Understand software development within an object-oriented framework using
a modern programming language and tool set.

• Use a set of computing skills such as reasoning about algorithms, tracing
programs, test-driven development, and diagnosing faults.

• Explain and apply fundamental constructs in event-driven programs,
including variables and expressions, control structures (conditionals/loops),
and API usage.

• Write simple programs using a given software infrastructure, API, and tool
chain.

• Gain exposure to a comprehensive mobile computing framework.
• Gain exposure to user interface design.

Prerequisites: LE/EECS1012 3.00
Course Credit Exclusions: LE/EECS1021 3.00, LE/EECS1020 3.00, LE/CSE1020
3.00, AK/AS/SC/CSE1020 3.00, AP/ITEC1620 3.00

EECS 1028 3.00 Discrete Mathematics for Engineers
(Cross-listed with MATH1028 3.00)
Introduction to abstraction; use and development of precise formulations of
mathematical ideas, in particular as they apply to engineering; introduction to
propositional logic and application to switching circuits; sets, relations and functions;
predicate logic and proof techniques; induction with applications to program
correctness; basic counting techniques; graphs and trees with applications; automata
and applications. Weekly three-hour lectures and two hours of mandatory tutorials per
week.

 The detailed list of topics includes

1. Propositional logic, truth tables. Applications:

o Building various switching circuits using OR, AND, NAND, etc., gates
(cf. for example, from Rosen 9.3).

2. Sets (union, intersection, Cartesian product, power sets, etc.), cardinality of sets
(finite and infinite),  strings.

3. Functions and relations (domain, range,  1-1, into, onto, 1-1 correspondence,
function composition, closures of relations, etc.) equivalence relations.

4. Predicate logic, properties of quantifiers (e.g., understanding the connection
between and via), proving statements with quantifiers.

5. Proof techniques including proof by contradiction,  proof by cases,   proving
implications (assuming the antecedent and proving the conclusion).

6. Mathematical induction on natural numbers, and structural induction on
recursively defined objects, such as formulae, trees. Applications:

o Proving that simple (loop and recursive) programs behave as intended
(this entails several case studies not just one example).

 38

7. Basic counting, subsets of a set, binomial notation, binomial theorem; sum and
product notation. Applications:

o Estimating security of passwords (i.e., computing the number of words
coming from a given alphabet, and interpreting this in terms of
likelihood of guessing a password correctly).

8. Elementary graph theory, including trees and spanning trees. Applications:
o Circuit analysis (finding the fundamental [independent] cycles of a

circuit by finding the spanning tree of the underlying graph);

o Storing and retrieving data efficiently (sort trees).

o Huffman coding (cf. for example, Rosen p.701);

9. Finite state machines with and without output, as tables and as state diagrams.
Applications:

o Arguing (by induction) that a given machine behaves correctly
according to a given specification.

o Using automata to assess correctness of simple concurrent processes.

o Using automata for text lexical analysis.

Learning Outcomes for the course:
By the end of the course, the students will be expected to be able to:

 Prove or disprove any propositional formula as the case requires, using truth
tables or syntactic proof techniques such as resolution.

 Prove or disprove as the case may be simple formulas in quantified logic.
 Translate English mathematical statements into predicate logic formulas.
 Prove simple mathematical statements by contradiction, by cases, or by

assuming the antecedent.
 Prove by induction statements that depend on a natural number; in particular:

Prove the correctness of single loop programs and simple recursive programs.
 Prove statements about inductively defined objects by structural induction; in

particular: Prove the correctness of simple recursive programs.
 Be able to reason about graphs and (binary) trees and use them in several

examples, e.g., demonstrate an ability to locate the fundamental cycles of an
electrical circuit

 Be able to show simple properties of trees (examples: relation between number
of nodes and edges; relation between number of nodes and height)

 Construct automata that can recognize in a text its “arbitrary” words and its
specific “keywords” the latter according to a given list (corresponding to the
action of a “scanner” module in a compiler)

 Construct simple automata to assess the correctness of simple concurrent
programs.

The grade weight distribution of the course components is as follows:

 39

15% - Assignments (biweekly)
15% - Quizzes (following the assignments)
30% - Midterm (in-class)
40% - Final Exam (scheduled by the Registrar office)

Recommended Text: Discrete Mathematics and Its Applications, by Kenneth H.
Rosen, ISBN: 0073383090; Publisher: McGraw-Hill.

Prerequisites: MHF4U and MCV4U
Course Credit Exclusions: LE/EECS1019 3.0, LE/SC/CSE1019 3.0, SC/MATH1019
3.00, SC/MATH2320 3.00

EECS 1520 3.00 Computer Use: Fundamentals
This course is appropriate for students who are not majoring in Computer Science or
Computer Engineering, but who would like an introduction to the use of the computer
as a problem-solving tool. No previous computing experience is assumed, but the
course does involve extensive practical work with computers, so some facility with
problem-solving and symbolic operations will be very helpful.
An introduction to the use of computers focusing on concepts of computer technology
and organization (hardware and software), and the use of applications and information
retrieval tools for problem solving.
Topics to be studied include: the development of information technology and its
current trends; analysis of problems for solution by computers, report generation, file
processing; spreadsheets; database; numeric and symbolic calculation; the functions
of an operating system; interactive programs.
Students should be aware that like many other computer courses, this course is
demanding in terms of time, and should not be added to an already heavy load. There
is scheduled and unscheduled time in the Glade laboratory. The course is not
appropriate for students who want more than an elementary knowledge of computing
and it cannot be used as a substitute for major EECS courses such as EECS1012,
EECS1020, and EECS1022.

Prerequisites: None
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with LE/EECS1020 3.00, LE/CSE1020
3.00, AK/AS/SC/CSE1020 3.00, LE/EECS1021 3.00, LE/EECS1022
3.00

Note: This course counts as elective credits towards satisfying Faculty degree
requirements but does not count as major credits in any of the EECS
programs.

EECS 1530 3.00 Computer Use: Programming
Concepts of computer systems and technology — e.g. software engineering,
algorithms, programming languages and theory of computation are discussed.

 40

Practical work focuses on problem solving using a high-level programming language.
The course requires extensive laboratory work.
Note: This course is designed for students who are not majoring in any one of the
EECS programs. However, those who wish to major in such a program but lack
programming background may use it as preparation. This course does not count as a
major credit in any program offered by EECS.

Prerequisites: None
Course Credit Exclusions: LE/CSE1530 3.00, AK/AS/SC/CSE1530 3.00,
LE/EECS1540 3.00, LE/CSE1540 3.00, AK/AS/SC/CSE1540 3.00
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with LE/EECS1020 3.00 or LE/SC/CSE1020
3.00 or LE/EECS1021 3.00 or LE/EECS1022 3.00 or AP/ITEC1620 3.00

EECS 1540 3.00 Computer Use for the Natural Sciences
Introduction to problem solving using computers — top down and modular design;
implementation in a procedural programming language — control structures, data
structures, subprograms; application to simple numerical methods, modelling and
simulation in the sciences; use of library subprograms. This course is intended for
students in the Faculty of Science and students in the BA Applied Math program.

Suggested reading:
• Nyhoff and Leestma, Fortran 77 for Engineers and Scientists, 3rd Edition,

Maxwell Macmillan.
• Keiko Pitter et. al., Every Student's Guide to the Internet (Windows version),

McGraw-Hill, 1995.
Prerequisites: None.
Course Credit Exclusions: LE/CSE1540 3.00, AK/AS/SC/CSE1540 3.00,
LE/EECS1530 3.00, LE/CSE1530 3.00, AK/AS/SC/CSE1530 3.00
NCR Note: No credit will be retained if this course is taken after the successful

completion of or simultaneously with LE/EECS1020 3.00,
LE/SC/CSE1020 3.00 or LE/EECS1021 3.00 or LE/EECS1022 3.00 or
AP/ITEC 1620 3.00

EECS 1541 3.00 Introduction to Computing for the Physical Sciences
This course introduces students to computer-based problem solving techniques that
can be used to approach problems in the physical sciences, such as answering
questions that require numerical computation, as well as basic analysis of
experimental data sets and simple statistical simulations.

Topic Overview:
An integrated procedural programming, data analysis, and data visualization platform
such as MATLAB (or its open-source equivalent OCTAVE) will be used to introduce
computational elements. Topics will include:

▪ Overview of the platform and computational accessories

 41

▪ Fundamentals of the platform, including operational syntax
▪ Data types (including cell arrays)
▪ Data file input/output
▪ Data statistics
▪ Basic and advanced plotting of data, including surface and contour plots
▪ Procedures and control structures, including syntax, conditional evaluation

statements (IF-ELSE), and loop programming (nested FOR loops, WHILE
loop)

▪ Code vectorisation
▪ User-defined functions
▪ Advanced functions (including nested and recursive functions and sorting)
▪ Simple matrix methods (systems of linear equations)
▪ Random numbers, and simple Monte-Carlo simulation (area estimation with

statistical error assessment)
▪ Data acquisition

Physics faculty members will assist in choosing applications from first-year physics to
use, such as recursive stepping through motion in two dimensions using a non-
Calculus finite-difference approach.
Two hours of lectures and three hours of Lab exercises weekly. To be offered once
per year in the Winter Semester.

Prerequisites: SC/MATH1013 3.00 or equivalent.
Co-requisites: SC/PHYS1010 6.00 or SC/PHYS1410 6.00 or SC/PHYS1420 6.00; and

SC/MATH 1021 3.00 or SC/MATH 1025 3.00
Course Credit Exclusions: LE/EECS1560 3.00, LE/SC/CSE1560 3.00, LE/EECS1570

3.00, LE/SC/CSE1570 3.00

EECS 1550 3.00 Introduction to Web Development
This is an introduction to the development of interactive web applications. Topics
include Hyper Text Markup Language (HTML), which is the language used to create
web pages, Cascading Style Sheets (CSS), which is used to specify the visual style
used to display web pages, and JavaScript, which is a programming language used
to create dynamic and interactive web pages.

Learning Outcomes for the course:
Upon completion of the course, students should be able to
 Create web pages using Hyper Text Markup Language (HTML) and Cascading

Style Sheets (CSS).
 Use JavaScript to create interactive web pages.
 Use the Internet to find and make use of information related to the course

topics.

 42

Prerequisites: None
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with LE/EECS 1012 3.00, GL/ITEC 2635
3.00 or AP/ITEC3020 3.00

EECS 1560 3.00 Introduction to Computing for Math and Statistics
This course introduces students to computer-based problem solving techniques that
can be used to approach problems in Mathematics and Statistics using the MATLAB
programming language. Through a combination of lectures and laboratory sessions,
students become familiar with a scientific computing environment that combines
numeric computation, data handling, high-level programming, graphics, and a variety
of visualization tools. Topics include:

1. An overview of the platform and computational accessories;
2. Fundamentals of the platform, including operational syntax;
3. Data types (including cell arrays);
4. Data file input/output;
5. Data statistics;
6. Basic and advanced plotting of data, including surface and contour plots;
7. Procedures and control structures, including syntax, conditional evaluation

statements (IF-ELSE), and loop programming (nested FOR loops, WHILE
loop);

8. Code vectorisation;
9. User-defined functions;
10. Advanced functions (including nested and recursive functions and sorting);
11. Simple matrix methods (systems of linear equations);
12. Random numbers, and simple Monte-Carlo simulation (area estimation with

statistical error assessment);
13. Data acquisition.
14. Math and Statistics Applications, including possibly topics from: Algebra,

Calculus, Probability and Statistics, Matrix Algebra, Trigonometry.

Prerequisites: SC/MATH1300 3.00
Co requisites: SC/MATH1310 3.00; SC/MATH1131 3.00
Course Credit Exclusions: LE/EECS1541 3.00, LE/SC/CSE1541 3.00, LE/EECS1570
3.00, LE/SC/CSE1570 3.00
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with SC/PHYS2030 3.00

EECS 1570 3.00 Introduction to Computing for Psychology

This course introduces students to computer-based problem solving techniques that
can be used to approach problems in Psychology such as the design of stimulus-

 43

response experiments and the capture and simple analysis of data from a variety of
experimental contexts. The analysis of data will mainly focus on data management
such as how to deal with files that come in different formats, how to make new
variables, how to make subsets of files, how to combine files, how to ftp files, etc.
Through a combination of lectures and weekly exercises students learn the basic
concepts of computer programming with application to such a domain. In addition to
an in-depth focus on one programming environment the course provides an overview
of a range of other experimental environments used in Psychology including brief
exposure to a statistical analysis package. This brief exposure will not go beyond very
basic descriptive statistics and creation of graphs.

• General introduction to computing and software development, command window,
editor, creating and running simple scripts.

• Variables and mathematical operations

• Selection control structures, logical operators, etc.

• Iteration control structures

• File I/O, recording user responses, etc.

• Data types: cell and structure

• Functions

• Plotting

• Creating 2-D graphics

• Simple animation

• MedialLab and DirectRT, SuperLab (use demo version full except for data
collection), E-Prime (demo version, full except for data collection)

Faculty from the Department of Psychology will participate in developing domain-
specific lab Exercises. The course is a lecture-based course (3 hours per week) with
an extensive component of weekly exercises through which student “learn by doing”.

Prerequisite: SC/MATH1505 6.00
Course Credit Exclusions: LE/EECS1541 3.00, LE/EECS1560 3.00, LE/SC/CSE1541
3.00, LE/SC/CSE1560 3.00

EECS 1710 3.00 Programming for Digital Media
The course lays the conceptual foundation for the development and implementation of
Digital Media artefacts and introduces some of the core concepts of Digital Media,
including the computing and cultural layers of media, and the notion of cultural logic
(Media Theory). Topics include programming constructs, data types and control
structures; the object oriented concepts of modularity and encapsulation; integration of
sound, video, and other media; networking constructs (HTTP connections); and the

 44

interrelationships among languages such as Processing, Java, and other Digital Media
tools (such as Macromedia Director and Python). Three lecture hours and weekly
90minute-long laboratory sessions. The laboratory sessions form an integral part of
the lectures and may cover examinable material that is not covered in class.
This course is an introduction to the interdisciplinary area of practice of New Media; it
is not a survey course. As such, the emphasis is on the development of a theoretical
conceptual foundation and the acquisition of the intellectual and practical skills
required for further courses in the Digital Media program, and thus is intended for
prospective majors in this program. It is not intended for those who seek a quick
exposure to Digital Media, or Digital Media applications or programming.
Topics include:
• Digital Media: Introduction and Core Concepts
• Examples of Digital Media artefacts, the notion of evaluation (e.g., the evaluation

of software), projects and questions positioned at the intersection of Science and
Art

• Why do we use the programming language and environment? (and not
Macromedia Director or other tools)

• The use of APIs and other sources of documentation
• Variables and Control Structures
• Iteration
• Modularity (functions, procedures)
• Object-Oriented Constructs (what is a class vs. what is an instance, instantiation,

attribute access and method invocation, constructors, encapsulation)
• Integration of Sound, Video (the use of cameras, microphones, other peripherals)
• Application invocation within a networked context (HTTP connections, URLs,

sharing information, server file access (read/write))
• The connection between programming languages such as Processing and Java,

and other tools for implementation Macromedia Director, Max/MSP, and other
Digital Media tools

Prerequisites: None.
Course Credit Exclusions: LE/EECS1530 3.00, LE/SC/CSE1530 3.00, AP/ITEC1620
3.00
NCR Note: No credit will be retained if this course is taken after the successful

completion of, or simultaneously with LE/EECS1021 3.00 or
LE/EECS1022 3.00 or LE/EECS1020 3.00 or LE/SC/CSE1020 3.00

EECS 1720 3.00 Building Interactive Systems
This course continues an introduction to computer programming within the context of
image, sound and interaction, subsequent to EECS1720 3.00. The student’s
foundation in basic programming will serve as a platform from which to explore the use
of diverse media within interactive systems, including the WWW and simple game
systems.
Topics include:

 45

• User Interfaces (UIs)
• UI Elements
• Event driven programming
• Intro to threads
• User Interface Builders
• Guidelines for UI design
• Objects, classes and inheritance
• Interactive WWW-based systems - introduction to WWW and basic network

concepts, HTML, Javascript, other WWW technologies (e.g. Flash), guidelines for
WWW design

• How to design simple games and make them engaging

Prerequisites: LE/EECS1710 3.00
Course Credit Exclusions: LE/EECS1020 3.00, LE/SC/CSE1020 3.00, LE/EECS1021
3.00, LE/EECS1022 3.00, AP/ITEC1620 3.00, AP/ITEC1630 3.00

General Prerequisites
The term “General Prerequisites” for all EECS courses at levels 2000 – 4000 is
defined as
 A cumulative grade point average of 4.50 or better over all previously completed6

Major7 EECS courses. The gpa computation excludes all EECS courses that have a
second digit 5, or are Co-Op/PEP courses.

Specific additional prerequisites may also apply to individual courses.

Not all EECS courses have a general prerequisite. For example, EECS3482 3.00 does
not. Students are encouraged to familiarise themselves with the prerequisites of each
course they are interested in enrolling, either in this publication or via the advanced
course search on York University’s “Search for Courses” web pages for current
students.

The department does not permit students to continue without the prerequisites
in any EECS major course.

Normally a maximum load of three EECS courses may be taken in any one of the fall
or winter terms (two during the summer term) at any level higher than 1000 provided
that prerequisites are met. BENG majors are allowed four and three courses
respectively.

6 “Completed” means that the course appears on your transcript, whether passed or failed,
and is not flagged NCR (No Credit Retained).
7 “Major”: Even though EECS courses: 1019, 1028, 4161 may appear in your transcript as
MATH courses they contribute to the computation of the gpa. Similarly EECS3121 and
EECS3122 contribute even if they appear as MATH3241 and MATH3242 respectively.

 46

Course Descriptions: 2000-Level

EECS 2001 3.00 Introduction to the Theory of Computation
The course introduces different theoretical models of computers and studies their
capabilities and theoretical limitations. Topics covered typically include the following.
• Finite automata and regular expressions; practical applications, e.g., text editors
• Pushdown automata and context-free grammars; practical applications, e.g.,

parsing and compilers
• Turing machines as a general model of computers; introduction to unsolvability: the

halting problem
Weekly three-hour lectures and 1.5-hour scheduled mandatory tutorials.

Learning Outcomes for the course:
By the end of the course, the students will be expected to be able to:

 Design machines (i.e., finite automata, Turing machines) to solve specified
decision problems

 Design regular expressions and context-free grammars for a given language
 Explain why an object designed in bullets (1) or (2) correctly meets its

specification
 Prove simple properties about models of computation (e.g., that the class of

regular languages is closed under complement)
 Demonstrate limits of computing by proving that a problem is not solvable

within a particular model of computation
 Show how one problem can reduced to another

Prerequisites: General prerequisites; LE/EECS1021 3.00 or LE/EECS1022 3.00 or
LE/EECS1720 3.00 or LE/EECS1030 3.00; LE/EECS1028 3.00 or SC/MATH1028
3.00 or LE/EECS1019 3.00 or SC/MATH1019 3.00

EECS 2011 3.00 Fundamentals of Data Structures
This course discusses the fundamental data structures commonly used in the design
of algorithms. At the end of this course, students will know the classical data
structures, and master the use of abstraction, specification and program construction
using modules. Furthermore, students will be able to apply these skills effectively in
the design and implementation of algorithms.
Topics covered may include the following.
• Review of primitive data types and abstract data type — arrays, stacks, queues and

lists
• Searching and sorting; a mixture of review and new algorithms
• Priority queues
• Trees: threaded, balanced (AVL-, 2-3-, and/or B-trees), tries
• Graphs: representations; transitive closure; graph traversals; spanning trees;

minimum path; flow problems

Learning Outcomes for the course:

 47

By the end of the course, the students will be expected to be able to:
 Instantiate a range of standard abstract data types (ADT) as data structures
 Implement these data structures and associated operations and check that

they satisfy the properties of the ADT
 Apply best practice software engineering principles in the design of new data

structures
 Demonstrate the ability to reason about data structures using contracts,

assertions, and invariants
 Analyse the asymptotic run times of standard operations for a broad range of

common data structures
 Select the most appropriate data structures for novel applications  

Prerequisites: General prerequisites; LE/EECS1030 3.00 or LE/EECS2030 3.00;
LE/EECS1028 3.00 or SC/MATH1028 3.00 or LE/EECS1019 3.00 or SC/MATH1019
3.00

EECS 2021 4.00 Computer Organization
This course provides a description of how computers work by following the abstraction
trail from the high-level programming layer down to the digital-logic component layer.
By understanding how the features of each abstraction layer are implemented in the
one beneath it, one can grasp the tapestry of the software/hardware interface.
Topics include programming in assembly language, machine instructions and their
encoding formats, translating and loading high-level programs, computer organization
and performance issues, CPU structure, single/multi-cycle datapath and control,
pipelining, and memory hierarchy. The course presents theoretical concepts as well as
concrete implementations on a modern RISC processor.
The lab sessions (3 hours/week) involve experiments on assembly and machine
language, hardware description languages and simulators, processor architectures,
cache memories.
Learning Outcomes for the course:
By the end of the course, the students will be expected to be able to:

 Translate high-level code to assembly language and machine code
 Represent data in machine readable form and describe how it is stored and

manipulated in a CPU
 Synthesize hardware of increasing complexity from logic gates to a simple

CPU using a Hardware Description Language
 Evaluate computer performance and compare performance on different

architectures and designs
 Describe and critique I/O and Parallel Hardware

Prerequisites: General prerequisites; LE/EECS1021 3.00 or LE/EECS1022 3.00 or
LE/EECS1720 3.00 or LE/EECS1030 3.00

 48

EECS 2030 3.00 Advanced Object Oriented Programming
This course continues the separation of concern theme introduced in all of its three
predecessors (the legacy course EECS1020, or the new EECS1021, EECS1022).
While EECS1021/1022 focuses on the client concern, this course focuses on the
concern of the implementer. Hence, rather than using an API (Application
Programming Interface) to build an application, the student is asked to implement a
given API. Topics include implementing classes (utilities/non-utilities, delegation within
the class definition, documentation and API generation, and implementing contracts),
aggregations (implementing aggregates versus compositions and implementing
collections), inheritance hierarchies (attribute visibility, overriding methods, abstract
classes versus interfaces, inner classes); generics; building graphical user interfaces
with an emphasis on the MVC (Model-View-Controller) design pattern; recursion;
searching and sorting (including quick and merge sorts); linked lists; and stacks and
queues. The coverage also includes a few design patterns. Three lecture hours and
weekly laboratory sessions. Lab tests and in-class tests are integral parts of the
assessment process in this course. Throughout the course an IDE (Integrated
Development Environment), such as eclipse, and a testing framework, such as JUnit,
are used.

Detailed list of topics:

Topic 1: Non-static features: UML diagrams, memory diagrams, this keyword,
constructor, accessor and mutator, equals, hashCode, toString, compareTo, tests,
class invariant, Javadoc

Topic 2: Aggregation and composition: UML diagrams, memory diagrams, == versus
equals, defensive copying in composition, aliasing, shallow copying, deep copying,
tests

Topic 3: Inheritance: UML diagrams, memory diagrams, which features are inherited,
subclass constructors, overriding methods, super keyword, contracts in inheritance
hierarchies, final, abstract classes, interfaces, tests, Javadoc
Topic 4: Concurrent programming: java.lang.Thread, starting, pausing, interrupting,
joining, application of aggregation and inheritance tests (and their limitations)

Topic 5: Event-driven programming: application of aggregation and inheritance

Topic 6: Recursion: examples of recursive methods, implementation of recursive
methods, binary search, merge/quick sort, proving (informal) termination and
correctness, solving recurrence relations, big-O (informal proofs)

Topic 7: Linked lists: implementation of singly linked list (size, contains, addFirst, add,
get, remove), implementation of doubly linked list, implementation of Iterator,
application of recursion, big-O (informal proofs)

Topic 8: Stacks and queues: precondition, postcondition, class invariants (informal
proofs), applications, implementation using arrays and List, big-O (informal proofs)

Topic 9: Binary trees: implementation: array and linked, application of recursion

 49

Learning Outcomes for the course:
By the end of the course, the students will be expected to be able to:

 Implement an API (Application Programming Interface).
 Test the implementation.
 Document the implementation.
 Implement aggregations and compositions.
 Implement inheritance.
 Use recursion.
 Implement linked lists.
 (Informally) prove that recursive algorithms are correct and terminate.
 (Informally) analyse the running time of (recursive) algorithms.

Lab tests and in-class tests are integral parts of the assessment process in this
course.

Prerequisites: General prerequisites; LE/EECS1021 3.00 or LE/EECS1020 3.00 or
LE/EECS1022 3.00 or LE/EECS1720 3.00
Course Credit Exclusions: LE/EECS1030 3.00, AP/ITEC2620 3.00

EECS 2031 3.00 Software Tools
This course introduces software tools that are used for building applications and in the
software development process. It covers the following topics:
• ANSI-C (stdio, pointers, memory management, overview of ANSI-C libraries)
• Shell programming
• Filters and pipes (shell redirection, grep, sort & uniq, tr, sed, awk, pipes in C)
• Version control systems and the "make" mechanism
• Debugging and testing
• All the above tools will be applied in practical programming assignments and/or

small-group projects.

The course is structured as weekly two-hour lectures and weekly two-hour labs.

Suggested reading:
• Kernighan and Ritchie, The C Programming Language (ANSI C Edition).
• Kernighan and Pike, The Practice of Programming.

Learning Outcomes for the course:
By the end of the course, the students will be expected to be able to:

▪ Use the basic functionality of the Unix shell, such as standard commands
and utilities, input/output redirection, and pipes

▪ Develop and test shell scripts of significant size.
▪ Develop and test programs written in the C programming language.
▪ Describe the memory management model of the C programming language
▪ Use test, debug and profiling tools to check the correctness of programs

Prerequisites: General prerequisites; LE/EECS1030 3.00 or LE/EECS2030 3.00
Course Credit Exclusions: LE/EECS2031 3.00, LE/CSE2031 3.00

 50

EECS 2100 2.00 Professional Development for Co-Op Students
Developing an effective e-Portfolio for engineering co-op students as a tool for
professional development and job finding. Learning from, and adapting to, the
transition from university to the workplace.

Prerequisites:

• Enrolment in the Engineering Co-op Stream, requiring a GPA of 5.00 and
completion of 60 credits of core engineering courses, of which at least 30
credits must be at the 2000-level and include ENG 1000 and ENG 2001 (or
equivalent).

• To qualify, the student must have attended all mandatory preparatory
sessions required by the Engineering Co-op Stream. This course must be
taken during the student’ s first work-term.

Co-requisite: LE/SC COOP 2001 0.00 Co-op Work-term

EECS 2200 3.00 Electrical Circuits

This course covers the basic principles of linear circuits. Kirchhoff's laws, circuit
equations, RL, RC, and RLC circuits, three-phase circuits, power analysis and power
factor, and magnetically coupled circuits. Three lecture hours per week, three
laboratory hours every other week.

• The topics will include:

• Introduction, circuit elements, current and voltage sources, power.

• Kirchhoff's laws, dependent sources.

• Nodal analysis, mesh analysis.

• Introduction to operational amplifiers.

• Superposition, Thevenin's and Norton's theorems.

• Inductance capacitance and duality.

• First order RL and RC circuits.

• Second order linear circuits.

• Sinusoidal steady state analysis.

• Sinusoidal steady state power calculation, power factor and correction.

• Introduction to Laplace transform.

• Magnetically coupled circuits and transformers.

 51

Learning Outcomes for the course:
Upon satisfactory completion of the course, the student will be able to:

 Analyse resistive circuits using basic laws (node and loop analysis, Thevenin,
Norton's, superposition)

 Determine the transient response of RC, RL, and RLC circuits
 Analyse AC circuits in steady state using the phasor method
 Use basic tools such as MATLAB and SPICE for circuit analysis
 Measure basic electrical signals using electronic measurement equipment in a

lab setting.

Prerequisites: General prerequisites, SC/PHYS1010 6.00 or SC/PHYS1801 3.00
Course credit exclusion: SC/PHYS3050 3.00.

EECS 2210 3.00 Electronic Circuits and Devices
This course covers the basic material required in the design of both analog and
digital electronic circuits. Three lecture hours per week, three hour biweekly
laboratory.

Topics:

• Amplifiers: signals and frequency spectrum of signals, models for amplifiers, and
frequency response of amplifiers.

• Operational Amplifiers: Inverting and non inverting configuration, difference
amplifiers, integrators and differentiators, Imperfections, frequency response and
effect of finite open loop gain.

• Diodes: review on the basic characteristics of the diode, small signal model, Zener
diode, half wave, full wave, and bridge rectifiers. SPICE diode model

• Bipolar Junction Transistors: Basic characteristics and operation, small signal
model, high frequency model, BJT as an amplifier (common emitter and common
collector), and SPICE BJT model.

• MOSFET: Device structure and operation, DC circuits, small signal model, high
frequency model, MOS amplifiers, CMOS, SPICE MOSFET model

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Design and analyse basic electronic circuits that contain diodes, operational
amplifiers, MOSFET and bipolar transistor.

 Use CAD tools for the analysis of electronic circuits;
 Write concise, coherent, and grammatically correct materials that reflect critical

analysis and synthesis.
 Effectively work in a team to achieve group goals and contribute to effective

working relationships.

Prerequisites: General prerequisites, LE/EECS2200 3.00.

 52

Course credit exclusion: SC/PHYS3150 3.00.

EECS 2311 3.00 Software Development Project
This course allows students to develop their first significant piece of software. There
will be formal instruction during the lecture hours providing guidance throughout the
software development process on topics such as eliciting user requirements, system
specification, use of modern IDEs, application development (including graphical user
interfaces), unit, component, integration, and acceptance testing, as well as
deployment strategies and user documentation.

However, the main intent of the course is for students to experience during the
supervised lab portion the issues that engineering large software systems entails, such
as changing or ambiguous requirements, understanding code written by someone
else, flexible vs. inflexible design, testing adequacy, and maintainability concerns. In
this way, the requirements elicitation techniques, development methodologies, design
guidelines, and testing approaches presented in third and fourth year courses will be
more meaningful since they will be grounded in personal experience.

The end deliverable will be judged both with respect to the quality of the user
experience it provides (correctness / robustness / user-friendliness), as well as in
terms of the quality of the produced software (readability / design / maintainability).

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Describe the requirements of a large software system.

 Select appropriate system elements for a high-level design description.

 Derive and implement test cases at the unit and system level.

 Produce a detailed user manual for an interactive system.

 Implement a large software system from scratch.

Prerequisites: General prerequisites; LE/EECS 1030 3.00 or LE/EECS 2030 3.00

EECS 2501 1.00 Fortran and Scientific Computing
Covers computer-based problem solving in a variety of scientific and engineering
settings. Introduces the FORTRAN programming language and its interface with
scientific libraries.
The first third of the course (4 weeks) is in lecture format (3 hours per week) covering
the following topics.
• Data types, control structures and program structure
• Functions and subroutines
• Arrays

 53

• I/O
• Errors in computations

For the remainder of the term students work on their own on various projects. Project
applications are drawn mainly from the following scientific areas.
• Numerical methods: linear systems; curve fitting; non-linear equations;

optimization; differential equations; Fourier transform
• Simulation: random numbers; distributions; queues
• Monte Carlo method
• Processing experimental data
• Data visualization
• Chaos and fractals

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Formulate tasks as computational problems to be solved algorithmically
 Implement algorithms for solving engineering problems in FORTRAN
 Test and debug programs
 Incorporate use of library routines into FORTRAN programs
 Apply simple numerical methods to solve problems

Prerequisites: One of LE/EECS1020 3.00 or LE/EECS1021 3.00 or LE/EECS1022
3.00 or LE/EECS1530 3.00

EECS 2602 4.00 Signals and Systems in Continuous Time
The course introduces continuous-time (analogue) signals including an analysis and
design of continuous-time systems. After reviewing core concepts in complex
numbers, trigonometry, and functions, the course considers three alternate
representations (differential equations, impulse response, and Laplace/Fourier transfer
function) for linear, time invariant (LTI) systems in the continuous-time domain. The
analysis of LTI systems is covered for each of the three representations. Frequency-
selective filters are introduced as a special class of LTI systems for which design
techniques based on Butterworth, Chebyshev, and Elliptic filters are covered.
Applications of continuous-time systems in communications and controls are also
presented. The course includes a mandatory lab that applies the theoretical concepts
and algorithms learned in the course to practical, real-world applications. The topics
covered in the course will be selected from the following list.

List of Topics:
• Review of complex numbers, trigonometry, and functions.
• Introduction to continuous time (CT) Signals and Systems.
• Properties of CT Systems.
• Representations for Linear, Time Invariant Systems: Differential
• Equations; Convolution Integral; Laplace/Fourier Transfer functions.
• CT Fourier Series for Periodic Signals

 54

• CT Fourier Transform for CT Aperiodic Signals.
• Design of CT Filters: Butterworth, Chebyshev, and Elliptic Filters.
• Applications of CT Systems in Communications and Control.

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Describe a physical process in terms of signals and systems, and describe the
properties of the CT systems.

 Calculate the frequency representations (Laplace and Fourier) of periodic and
aperiodic CT signals.

 Compute the steady state outputs of linear time-invariant systems in the
continuous-time domain using three different but equivalent techniques: (i)
solving differential equations, (ii) convolution with the impulse response, and;
(iii) the Fourier (or, alternatively, the Laplace) transform.

 Represent a CT linear time-invariant system using its magnitude and phase
spectrum.

 Design CT frequency selective filters (in particular, the Butterworth,
Chebyshev, and Elliptic filters) based on given specifications for the system.

 Analyse practical applications in controls and communication systems using
the analysis techniques covered in the course.

 Represent CT signals/systems as discrete-time signals/systems and use
MATLAB to analyse and design the CT signals/ systems for selected real-
world applications.

The weight distribution of the graded course components is as follows:

• 12% - Assignments (biweekly)
• 12% - Quizzes (following the assignments)
• 24% - Lab Projects (biweekly)
• 20% - Midterm (in-class)
• 32% - Final Exam (scheduled by the Registrar office)

Prerequisites: General prerequisites, SC/MATH1014 3.00, SC/MATH1025 3.00
Course Credit Exclusions: LE/EECS3451 4.00, LE/SC/CSE3451 4.00

Course Descriptions: 3000-Level

EECS 3000 3.00 Professional Practice in Computing
Professional, legal and ethical issues in the development, deployment and use of
computer systems and their impact on society. Topics include: the impact of
computing technology on society, privacy and security, computer crime, malware,
intellectual property, legal issues, professional ethics and responsibilities. One third of
the course will consist of guest lecturers from industry, government and the university
who will typically discuss a broad range of topics related to professional issues
(entrepreneurialism, small business start-up, human resources, infrastructure planning

 55

and development, research and development in industry, project management, etc.).
In addition approximately another third of the course will be spent on topics related to
ethics and legal issues and will usually be co-taught by faculty from a unit such as the
Department of Philosophy, the Division of Social Science, or Osgoode Law School.

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 describe the main categories of ethical theories and key ways in which
computer technology gives rise to new ethical issues

 describe how computing technology affects privacy, the roles and activities of
Information and Privacy Commissioners in Canada, the laws they enforce, and
key international efforts (agreements and treaties) to regulate electronic data
with a view to maintaining privacy

 describe how computing technology has impacted, in both positive and
negative ways, the exercise of free speech

 describe how software is protected under copyright and patent law, how
licensing is used, and how the intellectual property regime affects the
development of new computing technology (both positive and negative effects)

 describe the four criteria required for an invention to be patentable
 search the Canadian Patent database for patents satisfying specified criteria
 describe the key ways in which computer technology provides new challenges

to law enforcement and the key elements of Canadian law that address
cybercrime

 describe the key characteristics of a profession and the role of professional
organisations in establishing and upholding standards of practice and codes of
conduct.

Prerequisites: General prerequisites
Course Credit Exclusions: ENG4000 6.00

EECS 3100 2.00 Critical Reflection on Work Experience using Professional
Portfolios
Learning from the co-op experience and integrating that knowledge into academic
studies. Use of the co-op e-Portfolio for targeted discussion topics focusing on
professionalism, continuous learning, communications, and the workplace.

Prerequisites: This course must be taken during the student’s last co-op work-term.
Enrolment in the Engineering Co-op Stream, requiring a GPA of 5.0

Co-requisites: LE/SC/COOP 3002, 3003, or 3004 0.00 Co-op Work-term

EECS 3101 3.00 Design and Analysis of Algorithms
This course is intended to teach students the fundamental techniques in the design of
algorithms and the analysis of their computational complexity. Each of these
techniques is applied to a number of widely used and practical problems. At the end
of this course, a student will be able to: choose algorithms appropriate for many
common computational problems; to exploit constraints and structure to design

 56

efficient algorithms; and to select appropriate tradeoffs for speed and space. Weekly
three-hour lectures and 1.5-hour scheduled mandatory tutorials.

Topics covered may include the following:
• Review: fundamental data structures, asymptotic notation, solving recurrences
• Sorting and order statistics: heapsort and priority queues, randomised quicksort and

its average case analysis, decision tree lower bounds, linear-time selection
• Divide-and-conquer: binary search, quicksort, mergesort, polynomial multiplication,

arithmetic with large numbers
• Dynamic Programming: matrix chain product, scheduling, knapsack problems,

longest common subsequence, some graph algorithms
• Greedy methods: activity selection, some graph algorithms
• Amortization: the accounting method, e.g., in Graham's Scan convex hull algorithm
• Graph algorithms: depth-first search, breadth-first search, biconnectivity and strong

connectivity, topological sort, minimum spanning trees, shortest paths
• Theory of NP-completeness

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Choose an appropriate algorithm to solve a given computational problem, and
justify that choice

 Design new algorithms using a variety of techniques (recursion, greedy
algorithm, dynamic programming, backtracking)

 Prove correctness of an algorithm using pre- and post-conditions and loop
invariants

 Prove bounds on the running time of an algorithm
 Apply standard graph algorithms to a variety of problems

Suggested reading:
• T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, 2nd edition,

McGraw-Hill and The MIT Press, 2001.
• J. Edmonds, How to Think About Algorithms, Cambridge University Press, 2008.

Prerequisites: General prerequisites; LE/EECS2011 3.00, SC/MATH1090 3.00,
SC/MATH1310 3.00

EECS 3121 3.00 Introduction to Numerical Computations I
(Cross-listed with SC/MATH 3241 3.00)
This course is concerned with an introduction to matrix computations in linear algebra
for solving the problems of linear equations, non-linear equations, interpolation and
linear least squares. Errors due to representation, rounding and finite approximation
are studied. Ill-conditioned problems versus unstable algorithms are discussed. The
Gaussian elimination with pivoting for general system of linear equations, and the
Cholesky factorization for symmetric systems are explained. Orthogonal
transformations are studied for computations of the QR decomposition and the

 57

Singular Values Decompositions (SVD). The use of these transformations in solving
linear least squares problems that arise from fitting linear mathematical models to
observed data is emphasised. Finally, polynomial interpolation by Newton's divided
differences and spline interpolation are discussed as special cases of linear equations.
The emphasis of the course is on the development of numerical algorithms, the use of
intelligent mathematical software and the interpretation of the results obtained on
some assigned problems.
Topics covered may include the following:
• Preliminaries—linear algebra, computer programming and mathematical software
• Number systems and errors—machine representation of numbers, floating-point

arithmetic, simple error analysis, ill-conditioned problems and unstable algorithms
• Solution of systems of linear equations—Gaussian elimination and its computational

complexity, pivoting and stability, special structures (Cholesky's factorization for
positive definite systems, banded systems, storage and computational complexities)
error analysis, condition number and iterative refinement

• Solution of over determined systems of linear equations by linear least squares
approximations—linear least squares problems, normal equations, orthogonal
transformations (Given's and Householder's), QR and singular value
decompositions (SVD), SVD and rank-deficient problems, computational
complexities versus robustness

• Interpolation—Newton's divided differences spline interpolation; banded linear
systems, error analysis for interpolation. Other interpolations (rational, B-splines)

Prerequisites: One of LE/EECS1540 3.00 or LE/EECS2031 3.00 or SC/EECS2501
1.00; one of SC/MATH1010 3.00 or SC/MATH1014 3.00 or
SC/MATH1310 3.00; one of SC/MATH1025 3.00 or SC/MATH1021
3.00 or SC/MATH2021 3.00 or SC/MATH2221 3.00

EECS 3122 3.00 Introduction to Numerical Computations II
(Cross-listed with SC/MATH 3242 3.00)
The course is a continuation of EECS3121 3.00. The main topics include numerical
differentiation, Richardson's extrapolation, elements of numerical integration,
composite numerical integration, Romberg integration, adaptive quadrature methods,
Gaussian quadrature, numerical improper integrals; fixed points for functions of
several variables, Newton's method, Quasi-Newton methods, steepest descent
techniques, and homotopy methods; power method, Householder method and QR
algorithms.
The final grade will be based on assignments, tests and a final examination.

Prerequisite: LE/EECS3121 3.00

EECS 3201 4.00 Digital Logic Design

This course covers the basic principles of switching circuit design and the design and
analysis of both combinational and sequential circuits. It also introduces the students

 58

to hardware description languages and modern CAD tools. The course includes a
hardware-oriented laboratory (2 hours per week)

• Switching circuits: Transistors as switches, transistor circuits for logic gates,
noise margin, CMOS, fan-in, fan-out, power and speed considerations

• Analysis and design of combinational circuits, basic gates, multiplexers,
decoders, encoders, and adders.

• Hardware Description Languages (HDL) and the use of HDL to represent
and simulate digital circuits.

• Analysis and design of sequential circuits (Flip flops, synchronous and
asynchronous design). Design using Algorithmic State Machines.

• Timing consideration. Propagation delay, contamination delay, setup and
hold time and their effect on the proper operation of the circuit and its speed.

• Register Transfer Language (RTL) and design. Design of datapath and
controllers.

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Analyse transistor switching circuits in terms of logic behaviour, signal levels
and timing

 Use Hardware Description Languages to design and realize standard and
custom combinational and sequential circuits

 Implement and test digital systems in programmable logic using modern CAD
and test tools

 Choose and apply combinational and sequential circuit elements to solve
computational problems

 Describe the concept of states and the sequential behaviour and control of
digital circuits

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS 2021 4.00, LE/EECS2200 3.00

EECS 3213 3.00 Communication Networks
This course is an introduction to communications and networking. Topics covered
include:
• Distinction between information and data, between signal and data, between symbol

and data, and between analogue and digital data
• Transmission media; time domain and frequency domain
• Fundamental limits due to Shannon and Nyquist
• Protocol hierarchies; the OSI model

 59

• Encoding of analogue/digital data as analogue/digital signals
• Data link protocols; error and flow control
• Medium access; Ethernet and token passing systems in LANs
• Routing of packets in networks, congestion control
• Internetworking
• Transport services and protocols
• High-level applications and their protocols, e.g. WWW(HTTP), e-mail (SMTP),

Internet names (DNS)

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

▪ Explain network architectures in terms of the open systems interconnect
(OSI) model and the role of each layer in the model.

▪ Classify networks in terms of topology, channelization, and routing
characteristics.

▪ Explain and calculate physical communication limits imposed by wired and
wireless channels in terms of delay, noise, and capacity.

▪ Explain and quantify means of signal representation for digital
communication and describe communication system arrangements for
forward and backward error control.

▪ Describe and analyse channelization strategies and medium access control
techniques.

▪ Explain routing strategies through switched networks.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
SC/MATH1310 3.00

EECS 3214 3.00 Computer Network Protocols and Applications
This course focuses on the higher-level network protocols, security issues, network
programming, and applications. Topics covered may include:
• Networking Basics
• Queuing Fundamentals
• Network Layer Protocols, Including ICMP, DHCP, and ARP Multicasting
• Transport Layer, UDP, and TCP
• Sockets and Socket Programming
• Application Layer Protocols, Including HTTP and DNS
• Multimedia
• Security
• VOIP

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 60

 Describe the different parts of the TCP/IP architecture, including their

functionality, strengths and weaknesses, and the design principles used in their
construction

 Describe several infrastructural applications such as FTP, HTTP and DNS, and
third-party applications like P2P systems

 Write small applications using socket programming
 Contrast the service models and features of transport layer protocols (TCP and

UDP), and describe the design of TCP congestion control algorithms
 Discuss issues affecting the choice of routing algorithms in practice, based on

a deep understanding of the network layer
 Determine the security needs of different parts of the TCP/IP architecture and

evaluate the existing security features based on knowledge of public- and
private-key cryptosystems

 Discuss how to alleviate problems in multimedia transmission over the Internet,
and evaluate existing multimedia protocols like SIP and RTCP

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00
NCR Note. This course is not open for credit to students who passed SC/CSE4213
3.00

EECS 3215 4.00 Embedded Systems
Introduction to the design of embedded systems using both hardware and software.
Topics include microcontrollers; their architecture, and programming; design and
implementation of embedded systems using field programmable gate arrays. The
following is a detailed list of topics to be covered:

• Introduction to specific microcontroller architecture, its assembly language, and

programming
• Peripherals, input/output ports and timers
• Interrupts
• Memory systems
• Analog to digital and digital to analog conversion
• Parallel and Serial Interfacing
• Hardware Modelling
• Structural specification of hardware
• Rapid Prototyping using field programmable gate arrays

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Select and utilize appropriate parallel, serial and analog interfaces
 Design embedded software and hardware systems to address problems in

important application domains under tight constraints
 Design, implement and interface with standard and custom peripherals

 61

 Prototype embedded systems using microcontrollers and field programmable
gate arrays (FPGAs)

 Understand embedded microcontroller architecture, development, debugging
and testing

References:
 M.D. Ciletti, Modeling, Synthesis, and Rapid Prototyping with the VERILOG (TM)

HDL, 1st ed, (Prentice-Hall).
 J.K. Peckol, Embedded Systems: A contemporary Design Tool (Wiley).
 W. Wolf, Computers as Components (Morgan-Kaufman).
 F. Vahid and T. Givargis, Embedded System Design: A Unified

Hardware/Software Introduction (John Wiley& Sons).

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS2031 3.00; LE/EECS3201 4.00

EECS 3221 3.00 Operating System Fundamentals
This course is intended to teach students the fundamental concepts that underlie
operating systems, including multiprogramming, concurrent processes, CPU
scheduling, deadlocks, memory management, file systems, protection and security.
Many examples from real systems are given to illustrate the application of particular
concepts. At the end of this course, a student will be able to understand the principles
and techniques required for understanding and designing operating systems.

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

▪ Explain the fundamental concepts that underlie operating systems, including
multiprogramming, concurrent processes, CPU scheduling, deadlocks,
memory management, file systems, protection and security.

▪ Explain algorithms, structures, and mechanisms that are used in operating
systems.

▪ Analyse the performance of process management methods and memory
management schemes in operating systems.

▪ Design and implement single programs using concurrent processes and
threads.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS2021 4.00; LE/EECS2031 3.00

EECS 3301 3.00 Programming Language Fundamentals
The topic of programming languages is an important and rapidly changing area of
computer science. This course introduces students to the basic concepts and
terminology used to describe programming languages. Instead of studying particular
programming languages, the course focuses on the "linguistics" of programming
languages, that is, on the common, unifying themes that are relevant to programming
languages in general. The algorithmic or procedural, programming languages are

 62

particularly emphasised. Examples are drawn from early and contemporary
programming languages, including FORTRAN, Algol 60, PL/I, Algol 68, Pascal, C,
C++, Eiffel, Ada 95, and Java.
This course is not designed to teach any particular programming language. However,
any student who completes this course should be able to learn any new programming
language with relative ease.
Topics covered may include the following:
• Classification of programming languages: language levels, language generations,

and language paradigms
• Programming language specification: lexical, syntactic, and semantic levels of

language definition
• Data, data types, and type systems: simple types, structured types, type

composition rules
• Control primitives, control structures, control composition rules
• Subprograms: functions and procedures, argument-parameter binding, overloading
• Global program structure: modules, generic units, tasks, and exceptions
• Object-oriented language features: classes, encapsulation, inheritance, and

polymorphism
• Critical and comparative evaluation of programming languages

Prerequisites: General prerequisites; LE/EECS2011 3.00, LE/EECS2001 3.00

EECS 3311 3.00 Software Design
A study of design methods and their use in the correct construction, implementation,
and maintenance of software systems. Topics include design, implementation, testing,
documentation needs and standards, support tools. Students design and implement
components of a software system. Three lecture hours and 1.5 lab hours, weekly.
This course focuses on design techniques for both small and large software systems.
Techniques for the design of components (e.g., modules, classes, procedures, and
executables) as well as complex architectures will be considered. Principles for
software design and rules for helping to ensure software quality will be discussed. The
techniques will be applied in a set of small assignments, and a large-scale project,
where students will design, implement, and maintain a non-trivial software system.

Topics Covered:

• Core Object-oriented Concepts and Techniques including genericity, multiple
inheritance, strong typing and dynamic binding

• Design by Contract (preconditions, postconditions, class invariants, and loop
variants and invariants).

• Hoare logic, structured development and reasoning about program
properties

• Design Documentation and UML/BON diagrams

 63

• Debugging, Unit Testing and Test Driven Development

• Abstract Data Types, Modularity and Information Hiding

• Design Patterns

• Documenting Design Decisions

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe software specifications via Design by Contract, including the use of
preconditions, postconditions, class invariants, loop variants and invariants

 Implement specifications with designs that are correct, efficient and
maintainable.

 Develop systematic approaches to organizing, writing, testing and debugging
software.

 Develop insight into the process of moving from an ambiguous problem
statement to a well-designed solution

 Design software using appropriate abstractions, modularity, information hiding,
and design patterns

 Develop facility in the use of an IDE for editing, organizing, writing, debugging,
testing and documenting code including the use of BON/UML diagrams for
documenting designs. Also the ability to deploy the software in an executable
form.

 Write precise and concise software documentation that also describes the
design decisions and why they were made

Prerequisites: General prerequisites; LE/EECS2011 3.00, LE/EECS2031 3.00,
SC/MATH1090 3.00

EECS 3342 3.00 System Specification and Refinement

This course provides students with an understanding of how to use mathematics (set
theory and predicate logic) to specify and design correct computer systems whether
the systems are sequential, concurrent or embedded. The course stresses both the
underlying theory as well as the ability to use industrial strength tools that can be
applied in practice. User requirements are formalized via an abstract mathematical
model that is amenable to formal reasoning long before any programming activity is
undertaken (e.g. as done in Event-B, Z and VDM). Successive models are like
blueprints in traditional engineering disciplines and their mathematical nature allows us
to reason about and predict their safety properties.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Document requirements organizing them into appropriate categories such as
environmental constraints versus functional properties (safety and progress).

 Construct high level, abstract mathematical models of a system (consisting of
both the system and its environment) amenable to formal reasoning.

 64

 Apply set theory and predicate logic to express functional and safety
properties from the requirements as events, guards, system variants and
invariants of a state-event model.

 Use models to reason about and predict their safety and progress properties.
 Plan and construct a sequence of refinements from abstract high-level

specifications to implemented code.
 Prove that a concrete system refines an abstract model.
 Apply the method to a variety of systems such as sequential, concurrent and

embedded systems.
 Use practical tools for constructing and reasoning about the models.
 Use Hoare Logic and Dijkstra weakest precondition calculus to derive correct

designs

Prerequisites: General prerequisites; LE/EECS2011 3.00, SC/MATH 1090 3.00

EECS 3401 3.00 Introduction to Artificial Intelligence and Logic Programming
Artificial Intelligence (AI) deals with how to build systems that can operate in an
intelligent fashion. In this course, we examine fundamental concepts in AI: knowledge
representation and reasoning, search, constraint satisfaction, reasoning under
uncertainty, etc. The course also introduces logic programming, a programming
paradigm based on predicate logic, where one specifies problems in a declarative way
and one can use the language to search for a solution. Students will learn how to
develop programs in Prolog to solve AI problems.

The course covers the following topics:

 Introduction to Artificial Intelligence, intelligent agents.
 Logical representations, first-order logic syntax and semantics, use in knowledge

representation.
 Basics of logic programming and Prolog, syntax, backchaining procedure.
 Inference in first order logic, unification, resolution.
 Reasoning with Horn theories, SLDNF resolution, Prolog control flow, backtracking,

closed world assumption, negation as failure.
 Prolog lists, arithmetic.
 Uninformed search.
 Informed search.
 Constraint satisfaction and backtracking search.
 Game/adversarial search.
 Uncertain reasoning, Bayes Nets.

Learning Outcomes for the course:
By the end of the course, the students are expected to be able to:

 Define the main objectives of artificial intelligence
 Describe how first-order predicate logic forms the basis of logic programming

 65

 Write logic programs in Prolog
 Use and modify heuristic state-space search algorithms such as A*, RTA* and

IDA*
 Represent knowledge in a small domain using predicate logic and use the

representation to build a logical database for a knowledge-based expert
system

 Describe and use some other AI techniques including backward and forward
chaining, Bayesian networks, game search and constraint satisfaction,
grammars for natural language processing

Prerequisites: General prerequisites; LE/EECS2011 3.00, SC/MATH1090 3.00
Course Credit Exclusions: SC/AS/AK/CSE3402 3.00

EECS 3403 3.00 Platform Computing
This course presents the .NET platform and in all topics, as applicable, compares this
platform to JEE and other platforms such as Mono, Ruby on Rails, Django, etc. Also,
the course discusses how platform computing has affected and affects major web
paradigms, such as the traditional World Wide Web, Web 2.0, Semantic Web/Web 3.0,
and W4 (World Wide Wisdom Web). Topics include:
• Introduction to .NET - the .NET Framework, the Common Language Runtime , the

Common Type System, common Language Specification, the .NET Framework
Class Library, Visual Studio

• NET Languages - C#: Examples, types, non-object-oriented features, object-
oriented features; Visual Basic: Examples, types, control structures, non-object-
oriented features, object-oriented features.

• .NET Framework Class Library highlights - System namespace, System.IO
namespace, System.Collections, System.XML, System.Net, System.Sockets,
System.Web, System.Windows.Forms.

• Building Web applications with ASP.NET - .aspx files, web controls, code-behind,
etc

• Building Distributed applications (Web Services)
• accessing databases with ADO.NET
• .NET security

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00,

EECS 3421 3.00 Introduction to Database Systems
Concepts, approaches and techniques in database management systems (DBMS) are
taught. Topics include logical models of relational databases, relational database
design, query languages, crash recovery, and concurrency control.
The purpose of this course is to introduce the fundamental concepts of database
management, including aspects of data models, database languages, and database
design. At the end of this course, a student will be able to understand and apply the
fundamental concepts required for the design and administration of database
management systems.

 66

Topics may include the following:
• Overview of Database Management Systems
• Relational Model
• Entity-Relational Model and Database Design
• SQL
• Integrity Constraints
• Crash Recovery
• Concurrency Control

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Model databases proficiently at conceptual and logical levels of design. Use
entity relationships (ER) models and ER diagrams with extension.

 Develop relational database schemas which respect and enforce data integrity
represented in ER models.

 Implement a relational database schema using structured query language
(SQL): create and manipulate tables, indexes, and views

 Create and use complex queries in SQL
 Write database application programs with an understanding of transaction

management, concurrency control, and crash recovery.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00
Course Credit Exclusions: AP/ITEC3220 3.00

EECS 3431 3.00 Introduction to 3D Computer Graphics
This course introduces the fundamental concepts and algorithms of three-dimensional
computer graphics. Topics include: an overview of graphics hardware, graphics
systems and APIs, object modelling, transformations, camera models and viewing,
visibility, illumination and reflectance models, texture mapping and an introduction to
advanced rendering techniques such as ray tracing. Optional topics include an
introduction to animation, visualization, or real-time rendering.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the basic stages and concepts of a modern graphics pipeline.
 Model a virtual scene using geometric primitives and affine transformations.
 Use mathematical formulas to animate elements of a virtual scene.
 Model basic materials and their interaction with virtual light sources.
 Explain basic concepts related to colour spaces and visual perception.
 Explain basic concepts related to global illumination.
 Produce rendered images of virtual scene from a corresponding scene

description file

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
SC/MATH1025 3.00

 67

Course credit exclusions: AK/AS/SC/CSE4431 3.00

EECS 3451 4.00 Signals and Systems
The study of computer vision, graphics and robotics requires background in the
concept of discrete signals, filtering, and elementary linear systems theory. Discrete
signals are obtained by sampling continuous signals. Starting with a continuous time
signal, students will review the concept of a discrete signal, the conditions under which
a continuous signal is completely represented by its discrete version, and discuss the
analysis and design of linear time-invariant systems. In particular, frequency selective
filters in both discrete and continuous time domain will be developed. An
accompanying lab will cover applications of the concepts covered in the lectures to
practical problems such as speech and image processing. There are three supervised
lab hours per week.

The following topics will be covered

 Continuous and discrete time signals
 Linear time-invariant systems
 Fourier analysis in continuous time
 Fourier analysis in discrete time
 Sampling
 Laplace transform
 Z transform
 Linear feedback systems
 Design of Continuous and discrete time frequency selective filters.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain how continuous and discrete-time signals can be represented in both
time and frequency domains

 Represent linear systems both as systems of differential/difference equations
and in terms of frequency response

 Describe and use the principles of linear time invariant systems and the
properties of Fourier and Laplace transforms

 Analyse the effects of discrete-time representation of continuous signals
 Design, build and measure continuous and discrete time frequency selective

filters

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS 2021 4.00; SC/MATH 1310 3.00
Course Credit Exclusions: LE/ESSE4020 3.00, SC/EATS4020 3.00, SC/MATH4130B
3.00, SC/MATH4830 3.00, SC/PHYS4060 3.00.

 68

EECS 3461 3.00 User Interfaces
This course introduces the concepts and technology necessary to design, manage and
implement user interfaces UIs. Users are increasingly more critical towards poorly
designed interfaces. Consequently, for almost all applications more than half of the
development effort is spent on the user interface.
The first part of the course concentrates on the technical aspects of user interfaces
(UIs). Students learn about event-driven programming, windowing systems, widgets,
the Model-view-controller concept, UI paradigms, and input/output devices.
The second part discusses how to design and test user interfaces. Topics include
basic principles of UI design, design guidelines, UI design notations, UI evaluation
techniques, and user test methodologies
The third part covers application areas such as groupware (CSCW), multi-modal input,
UIs for Virtual Reality, and UIs for the WWW.
Students work in small groups and utilise modern toolkits and scripting languages to
implement UIs. One of the assignments focuses on user interface evaluation.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the capabilities of both humans and computers from the viewpoint of
human information processing.

 Describe and critically evaluate typical human–computer interaction (HCI)
models, styles, and various historic HCI paradigms.

 Apply an interactive design process and universal design principles to
designing HCI systems.

 Describe and apply HCI design principles, standards and guidelines.
 Analyse, identify and critically evaluate user models, user support, socio-

organizational issues, and stakeholder requirements of HCI systems.
 Analyse, discuss and critically evaluate HCI issues in groupware, ubiquitous

computing, virtual reality, multimedia, and Word Wide Web related
environments

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00
Course Credit Exclusions: AP/ITEC3230 3.00, ITEC3461 3.00

EECS 3481 3.00 Applied Cryptography

This course provides an overview of cryptographic primitives in the context of
computer security and looks at how they are applied to protect communication
patterns. The emphasis is on the applied aspects as used in software to protect
applications and build secure protocols.

Topics:

 Foundation: security goals, the communication model, classification of attacks.

 69

 Classical Cryptography: classical ciphers, diffuse and confuse, information theory,
and cryptanalysis.

 Modern Cryptography: modern symmetric ciphers, perfect secrecy, block and
stream ciphers, modern asymmetric ciphers.

 Hash Functions: message integrity, digital signatures, certificate authorities, key
distribution protocols.

 Advanced topics and applications: May include secret sharing, zero-knowledge
proofs, quantum cryptography, and digital cash.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the workings of fundamental cryptographic algorithms in classical,
symmetric, and asymmetric settings, and apply them programmatically.

 Attack a given communication pattern using exhaustive as well as cryptanalytic
techniques such as meet-in-the-middle, person in the middle, or birthday, or by
exploiting an algorithmic vulnerability.

 Analyse a given communication pattern with respect to achieving certain goals
in a security context by identifying vulnerabilities, threats, and risks and
recommending hardening mechanisms.

 Apply cryptographic primitives in advanced settings such as secret sharing,
zero-knowledge, and digital cash.

 Explain the impact of advances in computing power, algorithm complexities,
and quantum computing, on the strength of cryptographic algorithms.

Prerequisites: General prerequisites; LE/EECS2011 3.00

EECS 3482 3.00 Introduction to Computer Security

This course introduces students to the basic concepts, goals and terminology of
computer security. It provides a general overview of the computer security body of
knowledge with an emphasis on the risk-based mind-set that a computer security
professional needs to have. Students will be exposed to both the theoretical and the
practical aspects of computer security (the lab sessions will include security case
studies as well as exercises using modern security tools).

Three lecture hours per week. Two lab hours every other week.

The topics that this course covers are the following:
• Foundational concepts of computer security including goals and

terminology
• Security Domains (e.g. physical, network, operating system, application

etc.)
• Overview of Cryptography
• Security Policies

 70

• Organizational approaches to computer security including different types
of security personnel and corresponding certifications

• Laws and Ethics as they relate to computer security
• Risk Management
• Security Auditing (planning, fieldwork, reporting, and follow-up) including

professional audit standards

Learning Outcomes for the course:
Upon completing this course the student will have demonstrated the ability to do the
following (divided by topic):

Foundational Concepts

• Define the meaning of the terms: vulnerability, threat, attack, measure;
and give an example of each.

• Describe the three C.I.A. goals of information security and provide an
example of an attack against each.

• Explain the difference between passive and active attacks and classify the
following attacks accordingly: packet sniffing, IP spoofing, and phishing.

• Provide examples that illustrate the meaning of the following attacks:
denial of service, traffic analysis, masquerade, replay, repudiation.

Security Domains
• Give three examples of physical security and provide, for each, an attack

example and a counter measure.
• Define the term "social engineering" and provide three examples of

attacks that use it.
• Compare and contrast the following malware: virus, worm, botnet, and

trojan.
• Explain the difference between operating system security, application

security, network security, and web security, and provide, for each, an
attack example.

Cryptography
• Define the meaning of the terms: encryption, decryption, ciphertext,

plaintext, and key.
• Explain the difference between symmetric and asymmetric cryptography

and name two algorithms in each category.
• Describe the notion of a message digest and name two popular

algorithms that compute it.
• Show how cryptography can be used to create digital signatures and how

these can be used to establish identities.
Security Policies

• Describe the general use of (security) policy and why it has such a central
role in a successful information security program.

• Explain the difference between security policy, standard and procedure.

 71

• List different types of security policies that can be found in an
organization, and describe what goes into each.

• Develop, implement and maintain various types of information security
policy.

Personnel
• Describe different types of information security positions, as well as

identify skills and knowledge required for each of the positions.
• List and describe different organization/structural approaches to

information security.
• Explain the importance of professional (security) certification, and list the

skills, advantages and obligations that are encompassed by each.
• Have knowledge of some useful security practices related to the process

of employee hire, termination and misuse control
Laws / Ethics

• Describe the difference between law and ethics, and the importance of
each.

• Explain the difference between Criminal and Civil Law, and when an
(computer- and/or network- related) offence will be prosecuted under one
vs. the other law.

• List major national and international laws that relate to the practice of
information security, providing relevant practical examples/cases for each.

• Identify the major professional organizations related to the field of
information security, and have general knowledge of their respective
Codes of Ethics.

Risk Management
• Define risk management and its role in an organization - both in general

and in more specific security-related terms.
• Use risk management techniques to identify and prioritize information

assets.
• Assess risk to information assets based on the likelihood of adverse

events, and estimate the ultimate effects of the adverse event on
information assets.

• Document the results of risk identification and evaluation process.
Auditing

• Explain each phase of a standard Audit from Planning, Fieldwork,
Reporting, and Follow-up.

• Describe the purpose of each deliverable in each phase in the Audit.
• Identify and prepare audit planning documents detailing the scope and

objectives of the audit.
• Obtain and document sufficient, reliable and relevant evidence to achieve

audit objectives, support findings and conclusions as per industry
standards.

• Have knowledge of professional audit standards and basic understanding
of frameworks.

 72

Students will also have gained practical experience with a variety of security tools
including:

• Penetration testing tools, such as the Metasploit framework
• Password crackers, such as John the Ripper or ophcrack
• Vulnerability scanners, such as OpenVAS and Nikto
• Intrusion detection systems, such as snort
• Malware, such as various trojans and viruses

Prerequisites: Any 12 university credits at the 2000-level in any discipline

EECS 3505 3.00 Electrical Systems for Mechanical Engineers
This is a course that develops the knowledge and skills mechanical engineers need to
interact with electrical/electronic systems. The gained knowledge and experiences in
this course will be essential for any future project activities.

Electronic Components-Devices: Introduction to electronic components and devices
(e.g., diode, full-wave rectifier, LED, DC power supplies, amplifiers, latches, flip-flop,
clocks), Laplace transform in circuit analysis

Electrical Noise: Noise characteristics & measurement, Reduction of noise

Introduction to Electro-magnetism: Theory of electromechanical energy conversion,
concepts of fundamental Lorentz force, torque equation, EMF equation, rotating fields,
and methods of excitation

DC Machines: Constructional details of DC machine, Ampere-turn calculations,
winding of DC armature, classification of dc machines. generator characteristics, motor
characteristics, starting and solid-state speed control of DC motors

Transformer & Three-Phase AC Circuit: Construction of transformer, principle of
operation of transformer, and/or basics of three-phase AC circuit

Three-Phase Induction Motors: Construction, principle of operation, rotor types,
synchronous speed, slip, equivalent circuit, and motor characteristics

Synchronous Machines: Construction, Principles of operation of Synchronous
Machine, Armature winding, Space harmonics, and Armature reaction of Synchronous
machines

Special Machines:

Stepper Motor: Introduction to the operation of stepper motors, Permanent-magnet
stepper motors, and identifying the advantages and disadvantages of various stepper
motors, Introduction to full-step and half-step operating modes.

Linear Motors: Introduction to operating principle of a linear motor, Introduction to
linear motor applications, Advantages and disadvantages of linear motors in
comparison to rotary motors,

 73

BLDC Motor: Introduction to common applications and operation of BLDC motors,
Advantages and disadvantages of BLDC motors.

Communication Protocols: Basics of communications protocols of electrical systems

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

• Comprehend the basic concepts of circuits as well as electronic components
and apply simulation tools to model their inputs and outputs relationships

• Explain the characteristics of electronic devices such as diode, operational
amplifier, laches, etc, and evaluate the behaviour of both passive and active
filters including low pass, high pass and band pass.

• Design and employ noise reduction strategies to improve signal quality.

• Recognize the two basic principles (i.e., generation of force and EMF)
related to electromechanical energy conversion.

• Identify the principles of operation of different machine types including: DC
machines, induction machines, synchronous machines, stepper motors,
linear motors and servo motors.

Prerequisites: SC/PHYS 1801 3.0; LE/MECH 2502 3.0

EECS 3602 4.00 Systems and Random Processes in Discrete Time
Discrete time signals are obtained by sampling continuous signals. Starting with a
continuous time signal, the course reviews the concept of a discrete time (DT) signal,
the conditions under which a continuous signal is completely represented by its
discrete version, and discusses the analysis and design of linear time- invariant,
discrete-time systems. In particular, frequency selective filters in the discrete time
domain are developed. The second half of the course will cover advanced topics of
random processes, noise, and their applications in the real world including the effect of
linear systems on the statistical properties of random signals. The course includes a
mandatory lab that applies the theoretical concepts and algorithms learned in the
course to practical, real-world applications. The topics covered in the course will be
selected from the following list.

List of Topics:
1. Introduction to DT Signals and Systems.
2. Properties of DT Systems.
3. Representations for Linear, Time Invariant DT Systems: Difference

Equations; Convolution Sum; Z/Fourier Transfer functions.
4. Design of DT Filters: FIR filters and IIR Filters.
5. Introduction to digital communication systems and information theory.

 74

6. Random variables in one and multiple dimensions: Expectation, higher
order moments, probability density functions, transformations, moment
generating functions, and characteristic functions.

7. Introduction to Random Sequences and Processes: Types of random
processes (WSS, SSS, and Ergodic processes), Output of LTI Systems
with random inputs, Noise, and Wiener-Khinchin Theorem.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Represent a continuous-time signal as a DT signal without any information
loss.

 Compute the steady state outputs of linear time-invariant systems in the
continuous-time domain using three different but equivalent techniques:

1. solving difference equations,
2. convolution with the impulse response, and;
3. the Fourier (or, alternatively, the Z) transform.

 Calculate the frequency representations (Fourier and Z-transforms) of periodic
and aperiodic DT signals.

 Represent a DT linear time invariant system using its magnitude and phase
spectrum.

Prerequisite: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS2602 4.00
Course Credit Exclusion: LE/EECS3451 4.00

EECS 3603 4.00 Electromechanical Energy Conversion
This is an introductory course for energy conversion. It covers the basic construction,
principle of operations and solid‐state control of different types of electric machines
including both AC and DC machines. In particular, the following list of electric
machines will be covered: DC machines, single-phase and poly-phase transformers,
three-phase induction motors, synchronous machines and special machines (stepper,
linear and servo motors).

Topics
Introduction to and explanation of the terms magnetic poles, magnetic fields, field
lines and field intensity, Magnetic circuits analysis, theory of electromechanical energy
conversion, concepts of fundamental Lorentz force, torque equation, EMF equation,
rotating fields, and methods of Excitation.
DC Machines. Constructional details of dc machine, Ampere turns calculations,
Winding of DC armature, classification of DC machines, generator characteristics,
motor characteristics, starting and solid-state speed control of DC motors.
Single-Phase Transformer. Construction of transformer, principle of operation of
transformer, ideal transformer, no-load vector diagram, equivalent circuit of
transformer, transformer operation (voltage regulation and efficiency), No-load and
short circuit tests of transformers, parallel operation of single--‐phase transformers.
Auto-Transformer. Constructional details, transformer voltage ratio, power transfer,
auto-transformer efficiency.

 75

Poly-Phase Transformer. Constructional details, Poly-phase connections, parallel
operation.
Special types of transformers. Voltage transformer, current transformer, three-
winding transformer.
Three-phase induction motors . Construction, principle of operation, rotor types,
synchronous speed, slip, equivalent circuit, motor characteristics, starting and solid-
state speed control of induction motors, no--‐load, short circuit (locked rotor) and load
tests, modes of operation of three‐phase induction motor (motoring, braking, and
induction generator).
Synchronous machines. Construction, principles of operation of synchronous
machine, armature winding, space harmonics, and armature reaction of synchronous
machines, vector diagram and equivalent circuit of synchronous machines, power flow
diagram and fundamental characteristics of synchronous machines, voltage regulation
and circle diagram of synchronous machines, parallel operation of synchronous
generators, salient--‐pole synchronous machines.
Stepper Motor:
Introduction to the design and function of stepper motors: Permanent-magnet stepper
motors, reluctance and hybrid stepper motors, identifying the advantages and
disadvantages of various stepper motors, introduction to the various principles for
controlling stepper motors (unipolar und bipolar), introduction to full-step and half-step
operating modes, introduction to various methods of current regulation for stepper
motors, Introduction to customary applications of stepper motors.
Linear Motors:
Introduction to design and operating principle of a linear motor, introduction to linear
motor applications, designs of linear motors, advantages and disadvantages of linear
motors in comparison to rotary motors.
BLDC Motor:
Introduction to common applications of BLDC motors, introduction to design and
function of BLDC motors, advantages and disadvantages of BLDC motors,
introduction to various circuits for controlling BLDC motors: square and sine-wave
current signals, introduction to various methods of detecting rotor position: Hall
sensors, back-emf, pole detection, resolvers and incremental sensors.

Laboratory exercises will investigate topics in electromagnetism, DC machines,
transformers, induction machines, synchronous machines, and special machines.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Understand the basic concepts of magnetic circuits as applied to electric
machines.

 Understand the two basic principles (generation of force and emf) that govern
electromechanical energy conversion.

 Describe fundamental principles of energy conversion, which are the analytical
foundations for understanding all types of drives.

 76

 Identify the principles of operation of different machine types including: DC
machines, transformers, induction machines, synchronous machines, stepper
motors, linear motors and servo motors.

 Derive the steady-state modelling (equivalent circuits) of different types of
machines.

 Analyse the steady-state performance and input-output operational
characteristics of the different types of machines.

 Learn to use space vectors presented on a physical basis to describe the
operation of an Ac machine.

 Describe solid-state control strategies for the different machine types.
 Present some motor and generator application

Prerequisites: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS2200 3.00, SC/PHYS2020 3.00

EECS 3604 4.00 Electromagnetic theory and wave propagation
The objective of this course is to provide the student with: an introduction to partial
differential equations; the mathematics of wave propagation; and the science of
electromagnetic wave propagation. Beginning with a review of vector calculus, the
course introduces solutions to partial differential equations. Maxwell’s equations are
presented as a motivating example for partial differential equations, and the EM wave
equation is derived from Maxwell’s equations in multiple dimensions. Solutions for
propagation in waveguides and transmission lines are given, and antennas are
introduced. Students are also introduced to solutions of partial differential equations
beyond EM, such as the diffusion equation.

Topics covered and approximate schedule:

• (Week 1) Review of vector calculus operations: grad, div, curl.
• (Weeks 2-3) Introduction to partial differential equations.
• (Week 4) The wave equation and its solutions.
• (Week 5-6) Electric and magnetic fields; Maxwell’s equations.
• (Week 7) Derivation of the wave equation from Maxwell’s
• (Week 8) EM wave propagation in one, two, and three dimensions.
• (Week 9) Waveguides; propagation modes.
• (Week 10) Transmission lines.
• (Week 11) Antennas.
• (Week 12) Partial differential equations beyond EM: the diffusion equation.

This course will include a one-hour weekly tutorial and two-hour weekly lab. (In the
final week, the lab will be replaced by extra tutorial sessions.)

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Comprehends the meaning of a partial differential equation (PDE) in a
mathematical expression;

 77

 Recognizes the wave equation as a type of PDE in a mathematical expression;
 Applies the travelling wave as a solution to the wave equation in a

mathematical expression, and produces this solution numerically in the
laboratory;

 Comprehends Maxwell’s equations as physical phenomena, in mathematical
expressions and in written descriptions, and identifies the effects of Maxwell’s
equations in the laboratory;

 Computes the wave equation from Maxwell’s equations in one, two, and three
dimensions, and applies the travelling wave solution, in a mathematical
expression;

 Computes the travelling wave solution in a conducting waveguide and in a
transmission line, and applies these solutions in the laboratory;

 Analyses the operation of EM antennas in mathematical expressions, and in
the laboratory;

 Differentiates between the wave equation and the diffusion equation in a
mathematical expression.

Prerequisites: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
SC/MATH1014 3.00, SC/MATH1025 3.00, SC/PHYS2020 3.00

EECS 3611 4.00 Analog Integrated Circuit Design
The course focuses on the analysis and design of analog integrated circuits in CMOS
technology. It covers basic MOS device physics, basic circuit models for single-stage
amplifiers, differential amplifiers, current mirrors, frequency response of amplifiers,
operational amplifiers, and layout techniques. The course includes a mandatory lab
that introduces the computer-aided design software to performance circuit simulation
and evaluation. The topics covered in the course will be selected from the following
list.

List of Topics

1. Introduction to analog design
2. Basic MOS device physics
3. Single--‐stage amplifiers
4. Differential amplifiers
5. Passive and active current mirrors
6. Frequency response of amplifiers
7. Noise
8. Feedback
9. Operational amplifiers
10. Layout and design rules

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 To analyse the characteristics of basic analog integrated circuits.
 To formulate the behaviour of basic analog circuits by inspection.
 To perform circuit simulation using computer-aided tool.

 78

 To draw layout based on given design rules.

Prerequisite: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS2210 3.00

EECS 3612 4.00 Introduction to Sensors and Measurement Instruments
The course covers the theory, principle and technology of sensors and transducers by
developing the students’ understanding of fundamental of measurement instruments
encompassing sensors, interface circuits to transfer the measured data for monitoring
and/or further signal processing purposes. Background in electronic circuit design,
basic knowledge of physics, chemistry and molecular/cellular biology are required
before taking the course. There will be small design projects for the labs to reinforce
sensor interfacing. In the design of each instruments, students are also introduced the
related theoretical and practical issues with a focus on needs assessment, creativity,
and innovation as they seek to identify market opportunities. Topics include the
fundamental of physical, chemical, and biological sensors used for various
applications including health or industrial applications; design of interface circuit
dedicated to each sensor; quality factors of sensors’ performance including resolution,
dynamic range and sensitivity. Also this course enables the electrical engineering
students to learn the principle and operation of main electrical measurement
instruments. The state of art sensor technology will also be discussed briefly. A
detailed list of topics covered within this course is as follows.

1. INTRODUCTION TO MEASUREMENT AND INSTRUMENTATION (1 week):

Principle of Measurement, Accuracy and Errors; Instruments: Sensors and
Interfaces; Applications including Electrical Measurement Instruments

2. PHYSICAL SENSORS AND INTERFACES (4 weeks): Capacitive/Impedometric,
Optical, Magnetic, Mechanical, Ultrasound and Thermal Methods

3. INTRODUCTION TO CHEMICAL AND BIOLOGICAL SENSORS (3 weeks): Gas
Sensors; Ion Selective Field Effect Sensor; DNA Sensors; Cell Sensors

4. FUNDAMENTALS OF ELECTRICAL MEASUREMENT (4.5 weeks): Current,
Voltage, Electrical Power and Electrical Energy Measurements ; Fundamental of
Oscilloscope

5. STATE OF THE ART TECHNOLOGY: FROM INNOVATION TO MARKET (0.5
weeks): Challenges of Electrical Measurement Technology; Challenges of Sensor
Small Market

Three lecture hours and three laboratory hours each week. The mandatory laboratory
applies the design and implementation concepts to representative sensors chosen
from described devices.

Learning Outcomes for the course:
The primary objective will be on developing the student’s ability to integrate and apply
their knowledge in electronic circuits and classic knowledge in physical, chemical and
biological science in the design of measurement instruments using advanced sensing
technologies. Specifically, students will:

 79

 Investigate measurement-sensing techniques used for various applications.
 Use electrical instruments and tools for the measurement of voltage, current,

power and energy.
 Design interface circuits and systems to record sensing data into a computer

for monitoring and simple signal processing purposes.
 Analyse the measurement question and select an appropriate the sensor

technology and interfacing method to develop the instrument.
 Describe the state of art sensing technology and the market challenges in this

field.

Prerequisites: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS2210 3.00

EECS 3900 0.00 Computer Science Internship Work Term
This experiential education course reflects the work term component of the
Technology Internship Program (TIP). Qualified Honours students gain relevant work
experience as an integrated complement to their academic studies, reflected in the
requirements of a learning agreement and work term report. Students are required to
register in this course for each four month work term, with the maximum number of
work term courses being four (i.e. 16 months). Students in this course receive
assistance from the Career Centre prior to and during their internship, and are also
assigned a Faculty Supervisor/Committee.

Prerequisites:
Enrolment is by permission only. Criteria for permission include: 1. That students have
successfully completed at least 9.00 EECS credits at the 3000-level including EECS
3311 3.00, with a Grade Point Average (GPA) of at least 6.00 in all mathematics and
computer science courses completed; 2. That students are enrolled full-time in the
Honours program prior to beginning their internship and have attended the mandatory
preparatory sessions as outlined by the Career Centre; 3. That students have not been
absent for more than two consecutive years as a full-time student from their Honours
degree studies; 4. That upon enrolling in this course, students have a minimum of 9
credits remaining toward their Honours degree and need to return as a full-time
student for at least one academic term to complete their degree after completion of
their final work term.

Note: This is a pass/fail course, which does not count for degree credit. Registration in
EECS 3900 0.00 provides a record on the transcript for each work term.

Evaluation:
Performance in each term (EECS3900 0.00) will be graded on a pass/fail basis. To
receive a passing grade, the student must pass each of the required components.
Note that not all components are required for each Internship term if the Placement
consists of more than two terms.
These components are:

 80

• Employer Evaluation. Completed by the employer, this summarises the
performance of the student at the placement. If the student is engaged in a 12 or
16-month work term placement at the same company, only two evaluations are
required. These are due in the second and final term of the placement. The
employer evaluation will be submitted to the Internship Coordinator.

• Internship Coordinator Evaluation. Completed by the Internship Coordinator, this
report is completed based on a minimum of two meetings, at least one normally
conducted at the work site. The first one will be conducted at the work site within the
first term, and the second as a follow-up either on-site or by telephone or email.

• Work Report. Submitted by the student upon his/her return to campus to the faculty
supervisor at the end of every work term. This is a short (3-5 page) summary of the
work performed during the internship and an assessment of the value of the
opportunity. The supervisor will grade the work report and forward it to the
Internship Coordinator.

The faculty supervisor assigns the course grade based upon the Employer Evaluation,
Internship Coordinator Evaluation, and Work Report.

FA/DATT 3929 0.00 Internship Work Term
Provides qualified Digital Media students with the opportunity to work in an internship
work term administered under the PEP (Professional Experience Program) of the
Lassonde School of Engineering.

Prerequisites: FA/DATT 3700 6.00 or FA/DATT 3936 3.00; LE/EECS 2011 3.00.
Overall cumulative GPA of 5.0.

Note: this is a pass/fail course, which does not count for degree credit. Registration in
FA/DATT 3929 0.00 provides a record on the transcript for each work term.

Evaluation:
Performance in each term will be graded on a pass/fail basis. To receive a passing
grade, the student must pass each of the required components. Note that not all
components are required for each Internship term if the Placement consists of more
than two terms.
These components are:
• Employer Evaluation. Completed by the employer, this summarises the

performance of the student at the placement. If the student is engaged in a 12 or
16-month work term placement at the same company, only two evaluations are
required. These are due in the second and final term of the placement. The
employer evaluation will be submitted to the Internship Coordinator.

• Internship Coordinator Evaluation. Completed by the Internship Coordinator, this
report is completed based on a minimum of two meetings, at least one normally
conducted at the work site. The first one will be conducted at the work site within the
first term, and the second as a follow-up either on-site or by telephone or email.

• Work Report. Submitted by the student upon his/her return to campus to the faculty
supervisor at the end of every work term. This is a short (3-5 page) summary of the
work performed during the internship and an assessment of the value of the

 81

opportunity. The supervisor will grade the work report and forward it to the
Internship Coordinator.

The faculty supervisor assigns the course grade based upon the Employer Evaluation,
Internship Coordinator Evaluation, and Work Report.

EECS 3980 0.00 Computer Security Internship Work Term
This experiential education course reflects the work term component of the
Technology Internship Program (TIP). Qualified Honours students gain relevant work
experience as an integrated complement to their academic studies, reflected in the
requirements of a learning agreement and work term report. Students are required to
register in this course for each four month work term, with the maximum number of
work term courses being four (i.e. 16 months). Students in this course receive
assistance from the Career Centre prior to and during their internship, and are also
assigned a Faculty Supervisor/Committee.

Prerequisites: Enrolment is by permission only. Criteria for permission include: 1. That
students have successfully completed at least 9.00 EECS credits at the 3000-level
including EECS 3482 3.00, with a Grade Point Average (GPA) of at least 6.00 in all
mathematics and computer science courses completed; 2. That students are enrolled
full-time in the Honours program prior to beginning their internship and have attended
the mandatory preparatory sessions as outlined by the Career Centre; 3. That
students have not been absent for more than two consecutive years as a full-time
student from their Honours degree studies; 4. That upon enrolling in this course
students have a minimum of 9 credits remaining toward their Honours degree and
need to return as a full-time student for at least one academic term to complete their
degree after completion of their final work term.

Note: This is a pass/fail course, which does not count for degree credit. Registration in
EECS 3980 0.00 provides a record on the transcript for each work term.

Evaluation:
Performance in each term (EECS3980 0.00) will be graded on a pass/fail basis. To
receive a passing grade, the student must pass each of the required components.
Note that not all components are required for each Internship term if the Placement
consists of more than two terms.
These components are:
• Employer Evaluation. Completed by the employer, this summarises the

performance of the student at the placement. If the student is engaged in a 12 or
16-month work term placement at the same company, only two evaluations are
required. These are due in the second and final term of the placement. The
employer evaluation will be submitted to the Internship Coordinator.

• Internship Coordinator Evaluation. Completed by the Internship Coordinator, this
report is completed based on a minimum of two meetings, at least one normally
conducted at the work site. The first one will be conducted at the work site within the
first term, and the second as a follow-up either on-site or by telephone or email.

 82

• Work Report. Submitted by the student upon his/her return to campus to the faculty
supervisor at the end of every work term. This is a short (3-5 page) summary of the
work performed during the internship and an assessment of the value of the
opportunity. The supervisor will grade the work report and forward it to the
Internship Coordinator.

The faculty supervisor assigns the course grade based upon the Employer Evaluation,
Internship Coordinator Evaluation, and Work Report.

Course Descriptions: 4000-Level

EECS 4070 3.00 Directed Studies
This is a course for advanced students who wish to carry out independent study on a
topic within EECS that is not offered in a regular course during a particular academic
session. The student must identify a faculty member with expertise in the area that is
willing to supervise the student's work.

At the beginning of the term, the student and faculty supervisor must prepare a written
description of the course, its content, and the method of evaluation. The work involved
must be equivalent to a three-credit course at the 4000 level, and the course
coordinator must confirm this before the student is permitted to enrol. The evaluation
will generally be based on written work and the student's ability to discuss the course
material during meetings with the supervisor. In addition, assigned work could include
oral or written presentations of material for non-specialists (such as a Wikipedia entry).

The course coordinator, student and supervising faculty member should each retain a
copy of the agreed-upon description of the course, and relevant details should be
entered into the student’s record via the student information system (SIS).

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

Specific learning objectives are dependent upon the exact nature of the course.
However, in all cases, students will develop ability to

 create a literature review
 gather in‐depth knowledge of a topic independently
 communicate the results of independent learning orally and in writing

Prerequisites: General prerequisites; successful completion of 24 credits in LE/EECS
major courses and permission of course coordinator

EECS 4080 3.00 Computer Science Project
This is a course for advanced students, normally those in the fourth year of an honours
program, or students who have passed 36 computer science credits. Students who
have a project they wish to do need to convince a member of the faculty in the
Department that it is appropriate for course credit.

 83

Alternatively, students may approach a faculty member in the Department (typically,
one who is teaching or doing research in the area of the project) and ask for project
suggestions. Whatever the origin of the project, a “contract” is required. It must state
the scope of the project, the schedule of work, the resources required, and the criteria
for evaluation. The contract must be signed by the student and his/her project
supervisor and be acceptable to the course director. A critical course component that
must be included in the contract is a formal seminar presentation. The course director
will arrange the seminar sessions, and students and their faculty supervisors are
required to participate. The seminar talks will have a typical length of 15-20 minutes,
and will be evaluated by the individual supervisor, the course director and one more
faculty member. This talk will be worth 30% of the final mark. The remaining 70% of
the course mark is the responsibility of the individual supervisor. Internship students
may apply to receive credit for their internship as a project course. A “contract”
including the seminar presentation is still required.

Prerequisites: General prerequisites and permission of the course director. Restricted
to students who have passed 36 credits in Computer Science.

Course Credit Exclusions: LE/EECS 4081 6.00, LE/EECS 4082 6.00, LE/EECS 4084
6.00, LE/EECS4088 6.00, LE/EECS 4480 3.00, ENG4000 6.00

EECS 4088 6.00 Computer Science Capstone Project
This is a course for students in the fourth year of an honours program. Students who
have a project they wish to do need to convince a member of the faculty in the
Department that it is appropriate for course credit. Alternatively, students may
approach a faculty member in the Department (typically, one who is teaching or doing
research in the area of the project) and ask for project suggestions. Whatever the
origin of the project, a “contract” is required. It must state the scope of the project, the
schedule of work, the resources required, and the criteria for evaluation. The contract
must be signed by the student and his/her project supervisor and be acceptable to the
course director. A critical course component that must be included in the contract is a
final presentation. The course director will arrange the final presentation session, and
students and their faculty supervisors are required to participate. The presentations
will be evaluated by the individual supervisor, the course director and one more faculty
member. This presentation will be worth 30% of the final mark. The remaining 70% of
the course mark is the responsibility of the individual supervisor. Internship students
may apply to receive credit for their internship as a project course. A “contract”
including the final presentation is still required.

Prerequisites: General prerequisites and permission of the course director. Normally
restricted to students who have passed 36 credits in Computer
Science.

Course Credit Exclusions: LE/EECS4080 3.00, LE/EECS4081 6.00, LE/EECS4082
6.00, LE/EECS4084 6.00, LE/EECS4480 3.00, ENG4000 6.00

EECS 4090 6.00 Software Development Capstone Project

 84

A well-designed software product is more than just a computer program. A software
product consists of quality code, a well thought out design developed via disciplined
professional engineering standards, appropriate literate documentation including
requirements, design and testing documents, a manual, and the appropriate
installation files and instructions needed to get the product to work. The product has to
be correct (i.e. it must satisfy all the requirements specified by the client), usable,
efficient, safe and maintainable.
The goal of this course is to provide students with an opportunity to integrate what they
have learned in earlier computer science courses, deepen their understanding of that
material, extend their area of knowledge, and apply their knowledge and skills in a
realistic simulation of professional experience. The end result must be a substantial
software product.
This course is run on a tight schedule over the Fall and Winter Terms; work is on-
going and regular. The course is intended to help with the transition from being a
student to being an active professional in industry. During the course students are
expected to perform independent study, plan their work, make decisions, and take
ownership of the consequences of their mistakes.
A combination of teamwork and individual work is required. The requirements
elicitation, requirements analysis, design, coding, testing, and implementation of the
product will be a team effort. However, individual responsibilities must be clearly
identified in every deliverable.
This project will be of significant size and like most industrial projects it will be time and
resource limited. Students must meet the specified deadlines. As a result, they will
have to set their goals and plan their work accordingly.
Students must apply sound mathematics, good engineering design, and algorithms
throughout the project. However, they will also need to apply heuristics and design
patterns, or “rules of thumb”, where sound, well-understood algorithms are not
available. Any such heuristics must be clearly identified and supported by arguments
that justify their choice. The teams will be required to show that the heuristic cannot fail
in a way that will violate safety restrictions or other restrictions designated as critical.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe the requirements of a large software system.
 Select appropriate system elements for a high-level design description.
 Derive and implement test cases at the unit and system level.
 Produce a detailed user manual for an interactive system.

 Implement a large software system from scratch.

Prerequisites: Only open to students in the Software Development Stream. B or higher
in LE/EECS3311 3.00, and completion of LE/EECS3101 3.00,
LE/EECS3342 3.00

Co requisites: LE/EECS 4312 3.00, LE/EECS 4313 3.00
Course Credit Exclusions: none

 85

EECS 4101 3.00 Advanced Data Structures (integrated with CSE5101 3.00)
The course discusses advanced data structures: heaps, balanced binary search trees,
hashing tables, red-black trees, B-trees and their variants, structures for disjoint sets,
binomial heaps, Fibonacci heaps, finger trees, persistent data structures, etc. When
feasible, a mathematical analysis of these structures will be presented, with an
emphasis on average case analysis and amortised analysis. If time permits, some
lower bound techniques may be discussed, as well as NP-completeness proof
techniques and approximation algorithms.
The course may include the following topics:

• Amortized and worst-case analysis of data structures
• Data structuring paradigms: self-adjustment and persistence
• Lists: self-adjustment with the move-to-front heuristic
• Search trees: splay trees, finger search trees
• Heaps: skew heaps, Fibonacci heaps
• Union-find trees
• Link-and-cut trees
• Multidimensional data structures and dynamization

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS2001 3.00, LE/EECS3101 3.00

EECS 4111 3.00 Automata and Computability (integrated with CSE5111 3.00)
This course is the second course in the theory of computing. It is intended to give
students a detailed understanding of the basic concepts of abstract machine structure,
information flow, computability, and complexity. The emphasis will be on appreciating
the significance of these ideas and the formal techniques used to establish their
properties. Topics chosen for study include: models of finite and infinite automata, the
limits to computation, and the measurement of the intrinsic difficulty of computational
problems.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS2001 3.00, LE/EECS3101 3.00

EECS 4115 3.00 Computational Complexity
This course provides an introduction to complexity theory, one of the most important
and active areas of theoretical computer science. Students learn basic concepts of
the field and develop their abilities to read and understand published research
literature in the area and to apply the most important techniques in other areas.
Topics include:
• Models of computation for complexity: Turing Machines, Random Access Machines,

Circuits and their resources such as time, space, size, and depth
• Time- and space-bounded diagonalisation, complexity hierarchies, resource

bounded reducibility such as log space and polynomial time reducibility
• P vs. NP: Nondeterminism, Cook's Theorem and techniques for proving NP-

Completeness

 86

• Nondeterministic space: The Savitch and Immerman/Szelepsenyi Theorems
• Important complexity Classes (and natural problems complete for them) including:

P, NP, co-NP, the Polynomial time Hierarchy, log space, Polynomial SPACE and
Exponential time

• If time permits the course may also include one or more advanced topics such as
parallel complexity classes, interactive proofs, applications to cryptography, and
probabilistic classes including random polynomial time

Possible Text:
• Arora and Barak, Complexity Theory, A modern approach, manuscript, 2008.
• Sipser, M., Introduction to the theory of computation (second edition), Course

Technology, 2005.

References:
• C.H. Papadimitriou, Computational Complexity, ISBN: 0-201-53082-1, Addison

Wesley, 1994.
• U. Schoning and Randall Pruim, Gems of Theoretical Computer Science, ISBN

3-540-64425-3, Springer Verlag, 1998.
• Lane A. Hemaspaandra and Mitsunori Ogihara, The Complexity Theory

Companion, ISBN 3-540-67419-5, Springer-Verlag, 2002.
• M.R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness, ISBN 0716710455, W.H. Freeman, 1979.
• D.-Z. Du and K. Ko, Theory of Computational Complexity, ISBN: 0-471-34506-7,

John Wiley and Sons, New York, NY, 2000.
• D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, ISBN

0139153802, Prentice-Hall, 1993.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00;
LE/EECS2001 3.00, LE/EECS3101 3.00

EECS 4161 3.00 Mathematics of Cryptography
(Cross-listed with SC/MATH 4161 3.00)
Cryptography deals with the study of making and breaking secret codes.

In this course we will be studying situations that are often framed as a game between
three parties: a sender (e.g., an embassy), a receiver (the government office) and an
opponent (a spy). We assume that the sender needs to get an urgent message to the
receiver through communication channels that are vulnerable to the opponent. To do
this communication, the sender and receiver agree in advance to use some sort of
code, which is unlocked by a keyword or phrase. The opponent will be able to
intercept the message. Is he/she able to unlock the message without knowing the key?

We will learn some probability theory, information theory and number theory to answer
questions about how vulnerable the methods of sending secrets are. This has a great
number of applications to Internet credit card transactions, wireless communication
and electronic voting. We will start by learning some classical codes (used up through

 87

WWI) and analysing those. The last third of the course we will start to learn the
methods that are used in modern cryptography.

Prerequisites: At least 12 credits from 2000-level (or higher) MATH courses (without
second digit 5, or second digit 7), or LE/EECS3101 3.00, or permission
of the instructor.

EECS 4201 3.00 Computer Architecture (integrated with CSE5501 3.00)
This course presents the core concepts of computer architecture and design ideas
embodied in many machines, and emphasises a quantitative approach to
cost/performance tradeoffs. This course concentrates on uniprocessor systems. A
few machines are studied to illustrate how these concepts are implemented; how
various tradeoffs that exist among design choices are treated; and how good designs
make efficient use of technology. Future trends in computer architecture are also
discussed.
Topics covered may include the following:

• Fundamentals of computer design
• Performance and cost
• Instruction set design and measurements of use
• Basic processor implementation techniques
• Pipeline design techniques
• Memory-hierarchy design
• Input-output subsystems
• Future directions

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

▪ Design cache, memory hierarchy, and virtual memory using different
techniques to improve cost/performance ratio.

▪ Demonstrate how dynamic scheduling and speculative execution can
improve the system performance and explain how it is implemented in
modern processors.

▪ Evaluate different design alternatives and make quantitative/qualitative
argument for one design over the other.

▪ Identity the different types of parallelism (data, instruction, thread,
transaction) for a given application.

▪ Compare and evaluate different techniques (such as multithreading,
multicore, or vector) to improve CPU performance

Prerequisites: General prerequisites; LE/EECS3201 4.00, LE/EECS3221 3.00

EECS 4210 3.00 Architecture and Hardware for Digital Signal Processing
The field of DSP is driven by two major forces, advances in DSP algorithms, and
advances in VLSI technology that implements those algorithms. This course
addresses the methodologies used to design custom or semi-custom VLSI circuits for
DSP applications, and the use of microcontrollers and digital signal processors to

 88

implement DSP algorithms. It also presents some examples of advances in fast or low
power design for DSP.
Topics may include
• Basic CMOS circuits: manufacturing process, area, delay, and power dissipation.
• Implementation of fundamental operations: Carry lookahead adders, carry select

adders, carry, save adders, multipliers, array multipliers, Wallace tree multipliers,
Booth array multipliers, dividers, array dividers.

• Array processor architectures: Mapping algorithms into array processors.
• High level architectural transformation for mapping algorithms into hardware:

pipelining, retiming, folding, unfolding:
• Mapping DSP algorithms (FIR, IIR, FFT, and DCT) into hardware.
• Implementing DSP algorithms using microcontrollers.
• DSP support in general-purpose processors.
• The effect of scaling and roundoff noise.

The course includes 6 two-hour lab sessions during which students design special
purpose architecture for digital signal processing algorithms using digital signal
processor boards and FPGA boards.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

▪ map a DSP algorithm to a graphical representation and determine its
fundamental lower bound on the achievable iteration or sampling period;

▪ use pipelining, retiming, and parallel processing to improve the performance
of a DSP implementation;

▪ use folding technique to reduce silicon area in a DSP implementation;

▪ assess alternative architectures based on a given set of design
specifications.

▪ implement a DSP algorithm based on an optimized architecture

Prerequisites: General prerequisites; LE/EECS3201 4.00; one of LE/EECS3451 3.00
or LE/EECS3602 4.00

EECS 4211 3.00 Performance Evaluation of Computer Systems
(integrated with CSE5422 3.00)
Topics covered may include the following:
• Review of Probability Theory—probability, conditional probability, total probability,

random variables, moments, distributions (Bernoulli, Poisson, exponential,
hyperexponential, etc.)

• Stochastic Processes—Markov chains and birth and death processes
• Queuing Theory—M/M/1 Queuing system in detail; other forms of queuing systems

including limited population and limited buffers

 89

• Application — A case study involving use of the queuing theory paradigm in
performance evaluation and modelling of computer systems such as open networks
of queues and closed queuing networks. Use of approximation techniques,
simulations, measurements and parameter estimation.

Prerequisites: General prerequisites; SC/MATH2030 3.00, LE/EECS3213 3.00

EECS 4214 4.00 Digital Communications
Digital communications has become a key enabling technology in the realization of
efficient multimedia systems, wireless and wired telephony, computer networks, digital
subscriber loop technology and other communication and storage devices of the
information age. The course provides an introduction to the theory of digital
communications and its application to the real world. Emphasis will be placed on
covering design and analysis techniques used in source and channel coding,
modulation and demodulation, detection of signal in the presence of noise, error
detection and correction, synchronization, and spread spectrum. An introduction to
information theory and recent development in the area will also be covered.
Topics covered in the course will be chosen from:
• Review of Probability and Random Variables
• Introduction to Stochastic Processes and Noise
• Introduction to Information theory: Shannon’s Source Coding and Channel Coding

theorems
• Source Coding: Lossless Coding (Huffman, Arithmetic, and Dictionary Codes)

versus Lossy Coding (Predictive and Transform Coding)
• Analog to Digital Conversion: Sampling and Quantization
• Baseband Transmission
• Binary Signal Detection and Matched filtering
• Intersymbol Interference (ISI), Channel Capacity
• Digital Bandpass Modulation and Demodulation Schemes
• Error Performance Analysis of M-ary schemes
• Channel Coding: Linear Block, Cyclic, and Convolutional Codes
• Decoding Techniques for Convolutional Codes, Viterbi Algorithm
• Application of Convolutional codes to Compact Disc (CD)
• Synchronization Techniques
• Spread Spectrum Modulation: Direct Sequence and Frequency Hopping
The course includes weekly two-hour lab sessions and a weekly one-hour tutorial.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

▪ Express and manipulate random signals in terms of probabilities and
statistical averages.

▪ Understand and quantify the performance of key pulse code modulation
systems.

▪ Understand and apply the theory of optimum detectors and filters for pulse
amplitude modulation systems.

 90

▪ Explain the operation of sequence detection methods.
▪ Describe the theory and operation of bandpass modulation and detection

systems.
▪ Design and build system components capable of enabling optimum digital

communication.

Prerequisites: General prerequisites; LE/EECS3213 3.00; one of SC/MATH2030 3.00
or SC/MATH2930 3.00; one of LE/EECS3451 4.00, LE/EECS3602 4.00,
LE/ESSE4020 3.00, SC/MATH4830 3.00, SC/PHYS4060 3.00, SC/PHYS4250 3.00
Course Credit Exclusions: SC/CSE4214 3.00

EECS 4215 3.00 Mobile Communications (integrated with CSE5431 3.00)
Wireless mobile networks have undergone rapid growth in the past several years. The
purpose of this course is to provide an overview of the latest developments and trends
in wireless mobile communications, and to address the impact of wireless transmission
and user mobility on the design and management of wireless mobile systems.
Topics covered may include the following:
• Overview of wireless transmission.
• Wireless local area networks: IEEE 802.11, Bluetooth.
• 2.5G/3G wireless technologies.
• Mobile communication: registration, handoff support, roaming support, mobile IP,

multicasting, security and privacy.
• Routing protocols in mobile ad-hoc networks: destination-sequence distance vector

routing (DSDV), dynamic source routing (DSR), ad-hoc on-demand distance vector
routing (AODV), and a few others.

• TCP over wireless: performance in and modifications for wireless environment.
• Wireless sensor networks: applications; routing.
• Satellite systems: routing, localization, handover, global positioning systems (GPS).
• Broadcast systems: digital audio/video broadcasting.
• Applications to file systems, world wide web; Wireless Application Protocol and

WAP 2.0; i-mode; SyncML.
• Other issues such as wireless access technologies, quality of service support,

location management in mobile environments, and impact of mobility on
performance.

The pedagogical components of the course include lectures, office hours, hands-on
laboratories and exercises, assignments, tests, and a project that addresses recent
research issues in wireless mobile networking.
Two-hour lab sessions will be held alternate weeks. The scheduled lab sessions will
involve the use of:
• a commercial software tool for designing and planning of cellular systems (currently

EDX);
• a wireless network simulator (currently Qualnet);
• software and hardware tools for building and monitoring of wireless LAN systems

(currently the tools from the Cisco wireless family of products).

 91

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the operation and purpose of key components in wireless
communication systems.

 Calculate the link budget of a wireless communicator.
 Analyse the characteristics and impact of indoor and outdoor wireless

channels.
 Analyse the coverage and throughput of wireless networks.
 Explain the channelization and control techniques employed by cellular and

LAN networks.

Prerequisites: General prerequisites; LE/EECS3213 3.00

EECS 4221 3.00 Operating System Design (integrated with CSE5421 3.00)
An operating system has four major components: process management, input/output,
memory management, and the file system. This project-oriented course puts operating
system principles into action. This course presents a practical approach to studying
implementation aspects of operating systems. A series of projects is included, making
it possible for students to acquire direct experience in the design and construction of
operating system components. A student in this course must design and implement
some components of an operating system and have each interact correctly with
existing system software. The programming environment is C++ under Unix. At the
end of this course, a student will be able to design and implement the basic
components of operating systems.
A solid background in operating systems concepts, computer architecture, C, and
UNIX is expected.

Prerequisites: General prerequisites; LE/EECS3221 3.00
Course Credit Exclusions: COSC4321 3.00

EECS 4301 3.00 Programming Language Design (integrated with CSE5423 3.00)
This course is a continuation of EECS3301 3.00 Programming Language
Fundamentals. Like its predecessor, the course focuses on the linguistics of
programming languages; that is, on the common, unifying themes that are relevant to
programming languages in general. Both algorithmic and non-algorithmic language
categories are examined. Current techniques for the formal specification of the syntax
and semantics of programming languages are studied. Skills are developed in the
critical and comparative evaluation of programming languages.

Prerequisites: General prerequisites; LE/EECS3301 3.00

EECS 4302 3.00 Compilers and Interpreters (integrated with CSE5424 3.00)
Principles and design techniques for compilers and interpreters. Compiler
organization, compiler writing tools, scanning, parsing, semantic analysis, run-time
storage organization, memory management, code generation, and optimization.
Students will implement a substantial portion of a compiler in a project.

 92

This course is a hands-on introduction to the design and construction of compilers and
interpreters. At the end of the course, you will understand the architecture of compilers
and interpreters, their major components, how the components interact, and the
algorithms and tools that can be used to construct the components. You will
implement several components of a compiler or interpreter, and you will integrate
these components to produce a working compiler or interpreter.
Specific topics to be covered may include the following:
• Compiler architecture: single-pass vs. multiple-pass translation
• Lexical analysis (scanning): design of scanners using finite automata; tabular

representations; tools for building scanners
• Parsing (syntax analysis): top-down vs. bottom-up parsing; parse trees and abstract

syntax trees; tabular representations for parsers; parser generators
• Symbol tables: efficient algorithms and data structures; representing data types in

symbol tables
• Type checking: scope control; static vs. dynamic type checking
• Memory management: static allocation; register allocation; stack allocation; heap

allocation; garbage collection
• Code generation: translating imperative programming constructs; function and

procedure calls; branching code; translating object-oriented constructs and modules
• Optimization: local and global optimizations; dead code removal; control flow

analysis

Prerequisites: General prerequisites, LE/EECS2011 3.00; LE/EECS3301 3.00
recommended

EECS 4311 3.00 System Development
System Development deals with the construction of systems of interacting processes.
The course focuses on abstraction, specification, and analysis in software system
development. Abstraction and specification can greatly enhance the understandability,
reliability and maintainability of a system. Analysis of concurrency and interaction is
essential to the design of a complex system of interacting processes.
The course is split into three parts. The first part discusses a semiformal method,
Jackson System Development (JSD) by Michael Jackson. JSD is used to build an
understanding of what system development entails and to develop a basic method of
constructing practical systems of interacting processes. JSD gives precise and useful
guidelines for developing a system and is compatible with the object-oriented
paradigm. In particular, JSD is well suited to the following:
• Concurrent software where processes must synchronise with each other
• Real time software. JSD modelling is extremely detailed and focuses on time at the

analysis and design stages.
• Microcode. JSD is thorough; it makes no assumptions about the availability of an

operating system.
• Programming parallel computers. The JSD paradigm of many processes may be

helpful.

 93

The second part of the course discusses the mathematical model CSP
(Communicating Sequential Processes by C.A.R. Hoare). While CSP is not suitable to
the actual design and development of a system of interacting processes, it can
mathematically capture much of JSD. Consequently, it is possible to use formal
methods in analysing inter-process communication arising out of JSD designs.
The third part of the course discusses Z notation and its use in the specification of
software systems. Z has been successfully used in many software companies — such
as IBM and Texas Instruments — to specify and verify the correctness of real systems.

Prerequisites: General prerequisites; one of LE/EECS3311 3.00 or LE/EECS3221
3.00

EECS 4312 3.00 Software Engineering Requirements
This course deals with the elicitation, specification and analysis of software
requirements and provides a critical description of available methods and tools, and
practical exercises on applying these methods and tools to realistic problems. Three
lecture hours per week and a weekly one-hour laboratory.

Topics Covered:
• Eliciting customer needs and goals and identifying the stakeholders.
• The use of UML diagrams such as use case, sequence, class and state

chart diagrams to help with the elicitation.
• Developing the system overview, system boundary and context diagram.
• Identifying the monitored variables and events and the controlled variables,

their types ranges, precision and units.
• Identifying the environmental assumptions and constraints.
• Understanding the Parnas 4-variables model for writing requirements.
• Developing the functional specification using tabular expressions

(mathematical function tables)
• The use of specification and theorem proving tools (such as PVS) to

describe the function tables and using tool to verify the completeness,
disjointness and well-definedness of the functional requirements.

• How to use function tables to specify safety-critical real-time systems and
cyber-physical systems and understanding, TR and RA.

• Validation of use cases against the functional specifications and validation of
the safety requirements.

• Describing non-functional and performance requirements.
• Deriving acceptance tests from the use cases and function tables.

Learning Outcomes for the course:
Software requirement engineers are experts at eliciting the needs of their customers,
translating customer needs into a precise requirements documents (that describes
what – not how – customer needs shall be satisfied), and providing systematic
evidence-based methods to validate the requirements and verify that the final software
product satisfies the requirements. Precise software requirements documents are

 94

especially needed in safety critical cyber-physical systems (e.g. nuclear reactors,
medical devices and transportation systems) and mission critical business systems
(e.g. banking systems, health provision and cloud systems). After successful
completion of the course, students are expected to be able to:
1. Elicit customer requirements by analysing customer goals and needs
2. Write precise requirements documents via (a) to (h):

a) Develop a system overview, identify the system boundary and draw a
context diagram

b) Identify the monitored variables and events and controlled variables
c) Identify the environmental assumptions and constraints
d) Describe the functional requirements using tabular expressions (function

tables) that specify the mathematical relation between the monitored
variables and events and the controlled variables

e) Describe the non-functional requirements
f) Prove that the functional requirements are complete, disjoint and well

defined. Use validation tools.
g) Provide a complete set of use cases and corresponding acceptance tests

so that each requirement is a verifiable contract of customer needs
h) Validate the functional requirements by proving that they preserve safety

properties and prove that the use cases satisfy the function tables. Use
validation tools.

Prerequisites: General prerequisites; LE/EECS3311 3.00

EECS 4313 3.00 Software Engineering Testing
An introduction to systematic methods of testing and verification, covering a range of
static and dynamic techniques and their use within the development process. The
course emphasises the view that design should be carried out with verification in mind
to achieve overall project goals.

Topics:

• understand the importance of systematic testing

• understand how verification is an integral part of the development process
and not a bolt on activity

• understand the strengths and weaknesses of particular techniques and be
able to select appropriate ones for a given situation

• All too often software is designed and then tested. The real aim must be to
take a more holistic view, where design is carried out with verification in
mind to achieve overall project goals. We shall take a fairly liberal view of
testing. This includes various automated and manual static analysis
techniques. In addition, we shall show how increased rigor at the
specification stage can significantly help lower-level testing.

 95

• Black box and white box testing. Unit level testing techniques and practical
exercises. Mutation testing, domain testing, data flow and control flow
testing. Coverage criteria. Theoretical background (e.g., graph theory).

• Static analysis techniques (including program proof tools such as the Spark
Examiner or ESC/Java).

• Higher level testing (integration, system, performance, configuration testing
etc). Testing tools and instrumentation issues.

• The testing of object oriented programs. Specific problems and existing
techniques, e.g., Junit, automatic test case generation via UML diagrams.

• Testing non-functional properties of high integrity systems. Worst case
execution times, stack usage. Hazard directed testing. Software fault
injection, simulation and hardware testing techniques.

• Management issues in the testing process. Planning, configuration
management. Q.A. Controlling the test process. Inspections reviews,
walkthroughs and audits. Influence of standards.

• Regression testing.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:
 Outline the objectives and limits of testing.
 Describe the strengths and weaknesses of the techniques discussed in the course.
 Select appropriate testing techniques for a given situation.
 Develop test harnesses for large software systems.
 Compile issue reports that are clear and complete.
 Produce quality written reports describing their testing.

Prerequisites: General prerequisites; LE/EECS3311 3.00

EECS 4314 3.00 Advanced Software Engineering

This course goes into more detail about some of the software engineering techniques
and principles presented in earlier courses, as well as introduces advanced aspects of
software engineering that are not addressed elsewhere:

• Software process and its various models and standards (CMMI, ISO 9001).
• Software architecture, i.e. the structure of data and program components that

are required to build a software system. Examples include distributed and
component-based architectures

• Model Driven Engineering and the use of software description languages.
• Software metrics, such as metrics for software quality, software design metrics,

as well as testing and maintenance metrics.
• Project management concepts on coordinating people and products.
• Cost estimation and project scheduling for large software systems.
• Risk management and mitigation.

 96

• Software configuration management (software evolution, change management,
version and release management).

• Emerging technologies, such as security engineering, service-oriented software
engineering, and aspect-oriented software development.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

• Derive models of software systems and express them in a language such as
UML.

• Understand the differences between different types of software architecture
• Apply metrics that estimate the quality, maintainability, and test adequacy of a

software system.
• Derive cost estimation tables delineating the tasks to be performed, and the

cost, effort, and time involved for each task.
• Identify risks associated with a given software project, and develop plans to

mitigate and manage these risks.
• Manage software projects by identifying the sequence of tasks that will enable

the project to complete in time, assigning responsibility for each task, and
adapting the schedule as various risks become reality.

Prerequisites: General prerequisites; LE/EECS 3311 3.00

EECS 4315 3.00 Mission-Critical Systems

Building on the material in System Specification and Refinement (EECS3342) which is
an introduction to mathematical modelling and refinement of systems using deductive
methods, this course provides students with a deeper understanding of both deductive
and algorithmic methods and tools for ensuring the safety and correctness of mission
critical systems (e.g. medical devices such as pacemakers, nuclear reactors and train
control systems). In addition to deductive techniques, the course treats algorithmic
methods such as model-checking tools, specification languages such as temporal
logic, table based specification methods, real-time systems, and the nature of software
certification.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the importance of safety-, mission-, business-, and security-critical
systems.

 Demonstrate knowledge of the importance of good software engineering
practices for critical systems.

 Use rigorous software engineering methods to develop dependable software
applications that are accompanied by certification evidence for their safety and
correctness.

 97

 Demonstrate knowledge of the method and tools using deductive approaches
(such as theorem proving).

 Demonstrate knowledge of methods and tools for algorithmic approaches
(such as model checking, bounded satisfiability) etc.

 Demonstrate knowledge of the theory underlying deductive and algorithmic
approaches.

 Use industrial strength tools associated with the methods on large systems.

Prerequisite: General prerequisites; LE/EECS3342 3.00

EECS 4351 3.00 Real-Time Systems Theory (integrated with CSE5441 3.00)
In real-time computing systems the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are produced.
For example, a computer controlling a robot on the factory floor of a flexible
manufacturing system must stop or turn the robot aside in time to prevent a collision
with some other object on the factory floor. Other examples of current real-time
systems include communication systems, traffic systems, nuclear power plants and
space shuttle and avionic systems.
Real-time programs in many safety-critical systems are more complex than sequential
programs or concurrent programs that do not have real-time requirements. This
course will deal with the modelling, simulation, specification, analysis, design and
verification of such real-time programs. The objective of the course is to expose the
student to current techniques for formally proving the correctness of real-time
behaviour of systems.
Topics covered may include the following:
• Techniques for expressing syntax and semantics of real-time programming

languages
• Modelling real-time systems with discrete event calculi (e.g. Petri net and state

machine formalisms)
• Specification of concurrency, deadlock, mutual exclusion, delays and timeouts
• Scheduling of tasks to meet hard time bounds
• CASE tools for analysis and design. At the end of the course the student will be

able to model and specify real-time systems, design and verify correctness of some
real-time systems.

Prerequisites: General prerequisites; LE/EECS3221 3.00

EECS 4352 3.00 Real-Time Systems Practice (integrated with CSE5442 3.00)
The key aspect that differentiates real-time systems from general purpose computing
systems is the need to meet specified deadlines. Failure to meet the specified
deadlines can lead to intolerable system degradation, and can, in some applications,
result in catastrophic loss of life or property. For example, the computations in an
aircraft collision avoidance system must be completed before specified deadlines to
prevent a mid-air collision. Real-time system technologies are applied in
telecommunication, signal processing, command and control, digital control, etc.

 98

Examples of applications of real-time system technologies that impact our daily lives
include engine, vehicle stability, airbag and break mechanisms in cars, flight control
and air-traffic control, and medical devices. Twelve supervised laboratory hours (two
hours, alternate weeks).
The course will focus on the technologies related to the design and implementation of
real-time systems. Topics may include:

• typical real-time applications
• process models of real-time systems
• scheduling technologies in real-time systems
• design and implementation of real-time systems software
• real-time systems hardware
• real-time operating systems
• real-time programming languages
• inspection and verification methods for real-time systems

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe typical applications of real-time systems.
 Describe key components of real-time systems and applications.
 Analyse the performance and correctness of real-time systems and

applications.
 Explain methods and techniques that are used in the design and

implementation of real-time systems and applications.
 Design and implement a simple real-time application.

Prerequisites: General prerequisites; LE/EECS3221 3.00

EECS 4401 3.00 Artificial Intelligence (integrated with CSE5326 3.00)
This is a second course in Artificial intelligence that covers selected topics in this area
such as: reasoning about action and planning, uncertain and fuzzy reasoning,
knowledge representation, automated reasoning, non-monotonic reasoning and
answer set programming, ontologies and description logic, local search methods,
Markov decision processes, autonomous agents and multi-agent systems, machine
learning, reasoning about beliefs and goals, and expert systems.

Prerequisites: General prerequisites; LE/EECS3401 3.00

EECS 4402 3.00 Logic Programming (integrated with CSE5311 3.00)
Logic programming has its roots in mathematical logic and it provides a view of
computation that contrasts in interesting ways with conventional programming
languages. Logic programming approach is rather to describe known facts and
relationships about a problem, than to prescribe the sequence of steps taken by a
computer to solve the problem.

 99

One of the most important problems in logic programming is the challenge of
designing languages suitable for describing the computations that these systems are
designed to achieve. The most commonly recognised language is PROLOG.
When a computer is programmed in PROLOG, the actual way the computer carries
out the computation is specified partly by the logical declarative semantics of
PROLOG, partly by what new facts PROLOG can "infer" from the given ones, and only
partly by explicit control information supplied by the programmer. Computer Science
concepts in areas such as artificial intelligence, database theory, software engineering
knowledge representation, etc., can all be described in logic programs.
Topics covered may include the following:

• Logical preliminaries: syntax and semantics of first order predicate logic and its
Horn logic fragment

• Logical foundations of logic programming: unification, the resolution rule, SLD-
resolution and search trees

• PROLOG as a logic programming system
• Programming techniques and applications of PROLOG
• Constrained logic programming systems

At the end of this course a student will be familiar with fundamental logic programming
concepts and will have some programming expertise in PROLOG.

Prerequisites: General prerequisites; LE/EECS3401 3.00; one of LE/EECS3101 3.00
or LE/EECS3342 3.00

EECS 4403 3.00 Soft Computing
This course introduces soft computing methods, which, unlike hard computing, are
tolerant of imprecision, uncertainty and partial truth. This tolerance is exploited to
achieve tractability, robustness and low solution cost. The principal constituents of soft
computing are fuzzy sets and logic, neural network theory, rough sets, evolutionary
computing and probabilistic reasoning. The course studies the methods and explores
how they are employed in associated techniques as applied to intelligent systems
design. The basics of each technique will be discussed and applications will illustrate
the strengths of each approach. The course is self-contained. Knowledge of
mathematics, in particular basic probability and statistics, and familiarity with a high-
level programming language is assumed. The class will have several
programming/homework assignments, a presentation, a final exam and a final project.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to
demonstrate:

• Knowledge of the terminology and concepts of soft computing;
• Insight into the possibilities and fundamental limitations of soft computing;
• Insight into the relative advantages and disadvantages of the major

approaches to soft computing (fuzzy sets, rough sets. Evolutionary
computing, neural networks, probabilistic reasoning and so on);

 100

• Understanding of the basic methods and techniques used in soft computing;
• Skills in applying the basic methods and techniques to concrete problems in

soft computing.

The course will be sectioned into parts:
Part I – Fuzzy Sets and Fuzzy Logic
Part II – Rough Sets
Part III – Neural Networks
Part IV – Evolutionary Computing
Part V – Probabilistic Reasoning
Part VI – Applications, Intelligent Systems design, Hybrid Systems
Part VII – Student Presentations
Parts I-VI will primarily rely on instructor lectures with significant student
involvement; Part VII will rely on students making presentations (e.g., their
projects).

Prerequisites: General prerequisites; LE/EECS2011 3.00, LE/EECS2031 3.00

EECS 4404 3.00 Introduction to Machine Learning and Pattern Recognition
(integrated with CSE5327 3.00)

Machine learning is the study of algorithms that learn how to perform a task from prior
experience. Machine learning algorithms find widespread application in diverse
problem areas, including machine perception, natural language processing, search
engines, medical diagnosis, bioinformatics, brain-machine interfaces, financial
analysis, gaming and robot navigation. This course will thus provide students with
marketable skills and also with a foundation for further, more in-depth study of
machine learning topics.

This course introduces the student to machine learning concepts and techniques
applied to pattern recognition problems in a diversity of application areas. The course
takes a probabilistic perspective, but also incorporates a number of non-probabilistic
techniques.

Topics may include:

• Introduction to Bayesian decision theory
• Survey of key probability distributions
• Non-parametric modelling
• Mixture models and expectation maximization
• Subspace models
• Linear regression
• Linear models for classification
• Cross-validation
• Kernel methods
• Sparse kernel machines

 101

• Introduction to graphical models
• Bagging & boosting
• Sampling techniques

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to
demonstrated ability to:

 To develop powerful pattern recognition algorithms using probabilistic
modelling and statistical analysis of data.

 Identify machine learning models and algorithms appropriate for solving
specific problems.

 Explain the essential ideas behind core machine learning models and
algorithms

 Identify the main limitations and failure modes of core machine learning models
and algorithms

 Program moderately complex machine learning algorithms
 Manage data and evaluate and compare algorithms in a supervised learning

setting
 Access and correctly employ a variety of machine learning toolboxes currently

available.
 Identify a diversity of pattern recognition applications in which machine learning

techniques are currently in use.

Prerequisites: General prerequisites; LE/EECS 2030 3.00 or LE/EECS 1030 3.00; one
of SC/MATH2030 3.00 or SC/MATH1131 3.00

EECS 4411 3.00 Database Management Systems
This course is the second course in database management. It introduces concepts,
approaches, and techniques required for the design and implementation of database
management systems.
Topics may include the following:

• Query Processing
• Transactions
• Concurrency Control
• Recovery
• Database System Architectures
• Distributed Databases
• Object-Oriented Databases

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe and apply indexing techniques used in relational database systems
 Use relational operators to design query evaluation plans
 Assess query evaluation plans for the purpose of query optimization

 102

 Perform database administration for a given workload
 Describe and classify modern non-relational database systems

Suggested reading:
• R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 2nd Ed.,

Benjamin Cummings, 1994.

Prerequisites: General prerequisites; LE/EECS2011 3.00, LE/EECS2021 4.00,
LE/EECS2031 3.00, LE/EECS3421 3.00

EECS 4412 3.00 Data Mining
Data mining is computationally intelligent extraction of interesting, useful and
previously unknown knowledge from large databases. It is a highly inter-disciplinary
area representing the confluence of machine learning, statistics, database systems
and high-performance computing. This course introduces the fundamental concepts of
data mining. It provides an in-depth study on various data mining algorithms, models
and applications. In particular, the course covers data pre-processing, association rule
mining, sequential pattern mining, decision tree learning, decision rule learning, neural
networks, clustering and their applications. The students are required to do
programming assignments to gain hands-on experience with data mining.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the terminology and concepts of data mining.
 Evaluate the possibilities and fundamental limitations of data mining.
 Evaluate the relative advantages and disadvantages of major approaches to

data mining.
 Demonstrate the basic methods and techniques used in data mining.
 Apply the basic methods and techniques to actual problems in data mining

Suggested reading:
• Jiawei Han and Micheline Kamber, Data Mining -- Concepts and Techniques,

Morgan Kaufmann, Second Edition, 2006.
• Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining,

Addison Wesley, 2006.
• Ian H. Witten and Eibe Frank, Data Mining -- Practical Machine Learning Tools

and Techniques (Second Edition), Morgan Kaufmann, 2005.
• Margaret H. Dunham, Data Mining -- Introductory and Advanced Topics,

Prentice Hall, 2003.

Prerequisites: General prerequisites; LE/EECS3101 3.00; LE/EECS3421 3.00; one of
SC/MATH2030 3.00 or SC/MATH1131 3.00

EECS 4413 3.00 Building E-Commerce Systems
A study of the technical infrastructure that underlies Electronic Commerce on the
Internet. The foundational concepts are presented through a series of projects that use
an industrial-strength framework on the server side, standard-compliant technologies

 103

on the client side, and a variety of messaging protocols on the network side. Best
practices, security concerns, and performance issues are emphasized throughout. A
good knowledge of Java is assumed. Familiarity with the upper networking protocols,
HTML, JavaScript, and SQL is helpful but not required.
The detailed content is shown below (with examples of specific technologies
parenthesized):

A. Multi-Tier Architecture
a. Statefull Applications and Restful Web Services (cookies, Tomcat

publish/subscribe scopes, soap and wsdl).
b. The Data Tier (sql, jdbc, dal/dao, xml Binding).
c. Web Analytics (lifetime event listeners, filters, tracking)

B. The Client Side

a. Content vs Presentation vs Formatting (xml, html, css)
b. Behaviour (js, jquery)
c. Dynamic view generation (dom, ajax, json)

C. Cross-Cutting Themes

a. Design Patterns and Best Practices (mvc, front controller,
annotation)

b. Web Security (authentication, csrf, injection)
c. Scalability and Emerging Trends (threading, clustering, connection

pooling; push/pull; other frameworks)

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Develop an appreciation of the pieces that make up the web landscape and
how these pieces interact with each other.

 Build a complete web application that incorporates session management,
database access, and analytics on the server side, and page formatting and
interactivity on the client side.

 Build restful web services that interact with Ajax-powered client apps using a
variety of transport protocols for data transfer.

 Become familiar with, and adhere to, best practices and design patterns to
ensure code maintainability, interoperability, and scalability, and to minimize
exploitable vulnerabilities.

 Learn how to build complex applications collaboratively through building
abstractions and APIs, naming conventions, documentation, and organizing.

 Compare and contrast existing frameworks and approaches and develop an
insight into the tectonic forces that are driving the trends.

Prerequisites: General prerequisites, LE/EECS2011 3.00

 104

EECS 4421 3.00 Introduction to Robotics (integrated with CSE5324 3.00)
The course introduces the basic concepts of robotic manipulators and autonomous
systems. After a review of some fundamental mathematics the course examines the
mechanics and dynamics of robot arms, mobile robots, their sensors and algorithms
for controlling them. A Robotics Laboratory is available equipped with a manipulator
and a moving platform with sonar, several workstations and an extensive collection of
software.
The course includes 12 hours of supervised lab sessions.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the basic terms and key concepts behind mobile robots and robot
arms.

 Analyse the forward and inverse kinematics of mobile robots and robot arms.
 Apply basic mathematical techniques to solve problems in robotics.
 Analyse the effects of noise in robotic navigation.
 Use techniques to reduce the effects of noise in robotic navigation.
 Develop software to solve problems in robotics.

Prerequisites: General prerequisites; SC/MATH1025 3.00, SC/MATH1310 3.00,
LE/EECS2031 3.00

EECS 4422 3.00 Computer Vision (integrated with CSE5323 3.00)
This course introduces the fundamental concepts of vision with emphasis on computer
science. In particular the course covers the image formation process, colour analysis,
image processing, enhancement and restoration, feature extraction and matching, 3-D
parameter estimation and applications. A Vision Laboratory is available equipped with
cameras, workstations, image processing software and various robots where students
can gain practical experience.
The course includes 12 hours of supervised lab sessions.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the basic terms and key concepts in computer vision.
 Apply basic mathematical techniques to solve problems in computer vision.
 Develop software to solve problems in computer vision.
 Analyse the effects of noise in computer vision algorithms.
 Use techniques to reduce the effects of noise in computer vision algorithms.

Prerequisites: General prerequisites; SC/MATH1025 3.00; SC/MATH1310 3.00;
LE/EECS2031 3.00

EECS 4425 3.00 Introductory Computational Bioinformatics

 105

This course is intended to provide an introduction to theoretical and practical
foundations necessary to a computer scientist working in the bioinformatics field.
Topics of the course will include:
1. Molecular biology for computer scientists

• The cell and the molecules of life: DNA, RNA, chromosomes, genes,
transcription, translation, splicing, replication, recombination

• The Central Dogma of Molecular Biology
• Proteins: structure and functions

2. Sequence analysis algorithms
• Scoring matrices
• Gaps
• Pairwise global and local alignment: dynamic programming algorithms for

general gap penalty and affine gap penalty
• Multiple global alignment: dynamic programming algorithm and heuristic

algorithms
• Progressive alignment algorithm, CLUSTAL

3. NCBI, National Centre for Biotechnology Information
4. BioJava: Java tools for processing biological data
5. Biological databases

• Databases containing nucleotides and Proteins information: GeneBank, PDB,
EST, UniGene, etc. (data formats, methods to connect different databases)

• Databases containing literature information: PubMed, Public Library of Science
• Heuristic algorithms for search in biological databases: BLAST, FASTA
• New algorithms for search in a biological database

6. Phylogenetic trees
• Algorithms for Reconstruction of Phylogenetic Trees: distance based and

character based
• Algorithms for the Maximum Parsimony and Maximum Likelihood Problems
• Subtrees and Supertrees: Algorithms
• Evaluation of Phylogenies Using Bootstrapping

7. Introduction to Microarray Data Analysis for Gene Expression
• Normalization
• Pearson correlation
• Algorithms for Hierarchical Cluster Analysis of Microarray Data
• An Open Problem: Annotation of Microarray Data

Prerequisites: General prerequisites, LE/EECS2011 3.00

EECS 4431 3.00 Advanced Topics in 3D Computer Graphics (integrated with
CSE5331 3.00)
This course discusses advanced 3D computer graphics algorithms. Topics may
include direct programming of graphics hardware via pixel and vertex shaders, real-
time rendering, global illumination algorithms, advanced texture mapping and anti-
aliasing, data visualization, etc.

 106

• Real-time image generation (rendering) techniques and direct programming of
graphics hardware via pixel and vertex shaders are technology that is increasingly
used in computer games. Furthermore, these are also often used for
computationally intensive applications as graphics hardware has far surpassed the
raw computational power of traditional CPU’s.

• Advanced texture mapping and anti-aliasing algorithms are used to create better
quality images, that show less digital artefacts.

• Global illumination algorithms are used to generate images that are
indistinguishable from real photos. Such images are used in the film industry,
architecture, games, and lighting design.

• Visualization is a key technology for dealing with large data volumes, which are
typically generated by computational simulations (weather forecasting, aerodynamic
design, etc.) or by sensor networks (satellites, geology, etc.). In these fields,
visualization in graphical form enables humans to understand the vast amounts of
data and the phenomena that they represent.

Scheduled lab sessions involve practical experimentation with advanced computer
graphics and will support the development, presentation and demonstration of a
comprehensive student design project. Two-hour lab sessions will be held during 6
weeks of the course.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe and use advanced hardware platforms, such as shader-based
streaming processors, in computer graphics systems.

 Describe approaches that solve the rendering equation, and model advance
concepts related to global illumination.

 Explain and measure performance issues related to interactive computer
graphics applications.

 Implement multi-pass rendering approaches to solve rendering and image
processing problems.

 Model scenes in real-time that include reflective and refracted surfaces.
 Compose CG elements into images of captured real-world environments using

image based lighting.
 Dynamically generate new geometric elements within the graphics pipeline

using geometry and tessellation shaders.

Prerequisites: General prerequisites; LE/EECS2021 4.00; LE/EECS3431 3.00
Course Credit Exclusions: COSC4331 3.00

EECS 4441 3.00 Human Computer Interaction (integrated with CSE5351 3.00)
• Introduction (Goals, Motivation, Human Diversity)
• Theory of Human-Computer Interaction (Golden Rules, Basic Principles,

Guidelines)
• The Design Process (Methodologies, Scenario Development)
• Expert Reviews, Usability Testing, Surveys and Assessments

 107

• Software Tools (Specification Methods, Interface-Building Tools)
• HCI Techniques
• Interaction Devices (Keyboards, Pointing Devices, Speech Recognition,

Displays, Virtual Reality Devices)
• Windows, Menus, Forms and Dialog Boxes
• Command and Natural Languages (Command Line and Natural Language

Interfaces)
• Direct Manipulation and Virtual Environments
• Manuals, Help Systems, Tutorials
• Hypermedia and the World Wide Web (Design, Creation, Maintenance of

Documents)
• Human Factors—Response Time and Display Rate; Presentation Styles—

Balancing Function and Fashion (Layout, Colour); Societal Impact of User
Interfaces (Information Overload); Computer Supported Cooperative Work
(CSCW, Synchronous and Asynchronous); Information Search and
Visualization (Queries, Visualization, Data Mining)

The topics of this course will be applied in practical assignments and/or group projects.
The projects will consists of a design part, an implementation part and user tests to
evaluate the prototypes.

Suggested reading:
• Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human-Computer

Interaction, 3rd ed, Prentice Hall, 2004.

Prerequisites: General prerequisites; LE/EECS3461 3.00
Course Credit Exclusions: COSC4341 3.00

EECS 4443 3.00 Mobile User Interfaces
Students learn how to design, implement, and test user interfaces for contemporary
mobile devices such as smart phones and tablet computers. Design issues will
consider the limits and capabilities of human sensory, perceptual, cognitive, and motor
behaviour and how these impact human interaction with mobile technology. Many
common features in mobile devices are not available in desktop computer systems
and, consequently, are not taught in other courses. As well as a graphical display, the
devices of interest for this course include touch input (including multi-touch and finger
pressure sensing), device position and motion sensing via accelerometers and
gyroscopes, environmental sensors, actuators for vibrotactile output, audio capture,
and camera input. The development of user interfaces for these devices is complex
since the target system and development systems are, by necessity, different. Thus,
the course will include instruction on the development environment including the use of
a debugger, simulator, and emulator, and connecting the target and development
systems via a physical or wireless link, and uploading and downloading files, including
the installation of application software.

The topics taught in this course include the following:

 108

• Development tools and environment
• Programming and application components for mobile user interfaces
• Touch input
• Location and mobile sensing
• Media, camera, and audio capture
• Text input

The course format is weekly 3-hour lectures and 2 hours of lab exercises every other
week.

Prerequisites: General prerequisites; LE/EECS3461 3.00

EECS 4452 3.00 Digital Signal Processing: Theory and Applications
Digital signal processing (DSP) has become the foundation of various digital systems
and communication and entertainment applications in today’s computer era. This
course consists of two parts. The first part introduces students to the fundamental DSP
concepts, principles and algorithms. In the second part, it covers some important DSP-
based applications in the real world.
The topics to be covered may include:
Part A: DSP theory

Review of discrete-time systems and sampling, review of Z-transforms, discrete
Fourier transform (DFT), Fast Fourier transform (FFT); digital filter design -
classical filter theory, FIR filters, IIR filters, filter banks, adaptive digital filters,
spectral estimation and analysis

Part B: DSP applications (selectively covered by the instructor)
1. Embedded DSP systems: Introduction to DSP processors, architecture and

programming, design of embedded DSP systems with TMS320 series
2. Speech and audio processing: Digital waveform coding: PCM, u-law, A-law, Time

domain analysis, Short-time spectrum analysis, Linear prediction analysis, Pitch
detection and tracking, Speech coding, Music processing

3. Image processing: Two-dimensional signals and systems, Image compression,
Image enhancement and restoration, radar and sonar signal processing: array
signal processing

This course is designed to cover most of DSP theory and algorithms and some
selected important DSP applications. In lab projects, students will design and
implement some DSP systems in selected application areas, such as speech and
audio processing or image processing, by using either particular DSP hardware (such
as TMS 320 series DSP chips) or software simulation, to get hands-on experience of
DSP system design.
The course components include: lectures, assignments, 12 supervised lab hours for 2-
3 lab projects, one midterm test, one final exam.

Learning Outcomes for the course:

 109

After successful completion of the course, students are expected to be able to:
▪ Explain the operations and key components in signal processing systems.
▪ Calculate time and frequency representations of digital signals.
▪ Analyse the characteristics of linear digital systems.
▪ Design and implement various types of digital signal processing systems

according to specifications.
▪ List and describe selected real-world applications of signal processing

techniques.

Prerequisites: General prerequisites; LE/EECS3451 3.00 or LE/EECS3602 4.00

EECS 4461 3.00 Hypermedia and Multimedia Technology
The course focuses this year on the design and implementation of hypermedia
presentation systems. "Hypermedia" refers to the non-linear organization of digital
information, in which items (such as a word in a text field or a region of an image) are
actively linked to other items. Users interactively select and traverse links in a
hypermedia presentation system in order to locate specific information or
entertainment, or to browse in large archives of text, sound, images, and video. Well-
structured hypermedia gives users a way of coping with the "navigation" problem
created by availability of low-cost, fast access, high-density storage media.
We will explore the following topics.
• The historical roots of hypermedia: Bush, Engelbart, and Nelson
• The digital representation of media: rich text, sound, speech, images, animation,

and video
• Enabling technologies for creating hypermedia
• The role of scripting and mark-up languages
• Networked hypermedia (e. g. HTTP browsers); performance and compression

issues
• Development Tool Kits
• Distribution and Intellectual Property Issues
Students will be expected to familiarise themselves quickly with the Macintosh
interface and basic features of the operating system. Students will be asked to
schedule themselves for at least six hours/week lab time in the Department's
Multimedia Lab, as the course work will involve a significant amount of exploration and
development of multimedia/hypermedia materials. Students will be divided into small
teams with specific responsibilities for individual exploration and programming tasks
assigned in connection with the course topics. Tasks may take the form of constructing
presentations, prototype applications, or the programming of useful scripts. The teams
will be asked to write short reports on their work that will be presented in class.

Prerequisites: General prerequisites; LE/EECS3461 3.00

 110

EECS 4471 3.00 Introduction to Virtual Reality
This course introduces the basic principles of Virtual Reality and its applications. The
necessary hardware and software components of interactive 3D systems as well as
human factors are discussed. The material is reinforced by practical assignments and
projects.
The topics will be approximately as follows:
• Introduction: applications, human sensory/motor system & capabilities
• Review of interactive 3D graphics programming. Real-time rendering (levels-of-

detail, impostors, etc.), graphics hardware, distributed rendering.
• Virtual Reality Technology (VR): VR input devices, filtering & tracking, VR output

devices, Augmented Reality (AR) hardware, spatial audio, haptics
• Virtual Environments (VE): event driven simulation, procedural animation, physics-

based modelling, collision detection & response, simulation & rendering in parallel,
interaction with VE, haptic and auditory simulation

• Human Factors: presence, immersion, simulator sickness (frame-rate, latency,
vergence vs. accommodation, visual vs. vestibular, etc), training (fidelity, transfer)

• Applications: training, collaborative virtual environments, medical, visualization &
decision support, design, entertainment, augmented reality, space applications,
teleoperation, computer games.

The scheduled lab sessions involve practical experimentation with virtual
environments and will support the development, presentation and demonstration of a
comprehensive student design project. Two-hour lab sessions will be held alternate
weeks in the Virtual Reality lab.
Learning Outcomes for the course:
After successful completion of this course, students are expected to be able to:

 Explain the perceptual capabilities and limitations of the human user and how
they relate to an effective virtual environment. Identify important human factors
concerns.

 Describe major application areas and technologies for virtual reality systems
 Implement interactive computer systems, including input, simulation and

display, using the virtual reality metaphor
 Simulate physical environments in a compelling manner using immersive

technology, event driven simulation, animation and physical modelling
 Work in small teams to develop, test and demonstrate a comprehensive

student design project
 Design, document and present a complex project in an effective manner

covering both technical and application domain issues

Prerequisites: General prerequisites; SC/MATH1025 3.00; SC/MATH1310 3.00;
LE/EECS2021 4.00; LE/EECS2031 3.00; LE/EECS3431 3.00

EECS 4480 3.00 Computer Security Project
This is a capstone project course for computer security students. The students engage
in a significant research and/or development project that has major computer security
considerations. This is a required course for Computer Security students.

 111

Students who have a project they wish to do need to convince the course director that
it is appropriate for course credit. They also need to find a faculty member that agrees
to supervise the project. Alternatively, students may approach a faculty member
(typically, one who is teaching or doing research in computer security) and ask for
project suggestions. For students that are not able to find a suitable project through
the above means, the course director is responsible for preparing appropriate projects.
Any of the projects may be individual or team projects at the discretion of the course
director (coordinator).

Whatever the origin of the project, a “contract” is required. It must state the scope of
the project, the schedule of work, the resources required, and the criteria for
evaluation. The contract must be signed by the student, his/her project supervisor, and
the course director. A critical course component that must be included in the contract
is a project presentation to take place after the project is finished. The course director
will arrange the presentation sessions, and students and their faculty supervisors are
required to participate. The presentations will have a typical length of 15-20 minutes,
and will be evaluated by the individual supervisor, the course director and at least one
more faculty member.
Learning Outcomes for the course:
The actual nature of the project will vary from student to student. However, after
successful completion of the course, students are typically expected to be able to:

 Apply the knowledge they have gained in other computer security courses to a
real-world system.

 Understand the computer security challenges faced by the information
technology industry.

 Articulate the questions that a particular area of research in computer security
attempts to address.

 Prepare a professional presentation that outlines the contributions they made
to the project and the knowledge they acquired.

Prerequisites: Restricted to students in the Computer Security degree. Students must
have passed 40 LE/EECS credits. Permission of the 4080/4480 coordinator is
required.

Course Credit Exclusions: LE/EECS 4080 3.00, LE/EECS 4081 6.00, LE/EECS 4082
6.00, LE/EECS 4084 6.00, LE/EECS4088 6.00, LE/EECS 4700 6.00

EECS 4481 4.00 Computer Security Laboratory
This course provides a thorough understanding of the technical aspects of computer
security. It covers network, operating system, and application software security.
Computer laboratory projects provide exposure to various tools in a hands-on setting.
• Access Control - Identification, authentication, and authorization; trust management.

 112

• Network Security - attacks, intrusion detection, auditing and forensics, firewalls,
malicious software, packet monitoring and other tools/techniques for finding network
security related problems.

• Operating System Security - threats, vulnerability, and control, password
management, accounts and privileges

• Application Software Security - design of secure systems, evaluation, Java security,
buffer overflows, database security, client-side and server-side securities, tamper
resistant software and hardware, finding vulnerabilities, developing patches, patch
distribution.

• Thinking Evil (understand the enemy so that you can design better software and
systems)—how to build a virus, Trojan, worm, (how to detect them and break them);
real-world vulnerability detection.

This is a lecture-based course with a laboratory of 3 hours per week.
Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

▪ Explain popular attacks targeting operating systems and networks
▪ Write intrusion detection signatures
▪ Design and deploy security controls (e.g. firewalls, honeypot, password

policy etc.)
▪ Discover vulnerabilities in computer systems
▪ Analyse and alter network traffic
▪ Explain and identify different types of buffer overflow
▪ Design secure software applications

Prerequisites: General prerequisites; LE/EECS3221 3.00, LE/EECS3214 3.00

Note. Students with background equivalent to the stated prerequisites are encouraged
to seek permission to enrol.

EECS 4482 3.00 Computer Security Management: Assessment and Forensics

• Information Security Fundamentals - basic terminology and concepts:
confidentiality, integrity, availability, authentication, auditing, information
privacy, legal aspects, etc.

• Security Policies - security plan (how to develop one), policies, procedures,
and standards, acceptable use policies, compliance and enforcement,
policy-based management systems (how they work, examples).

• Access Controls - physical, technical, and data access, biometrics

• Risk Management - risk analysis and threat quantification, contingency
planning, disaster recovery.

 113

• Incident Response - response methods, emergency response teams,
forensics principles and methodology, computer crime detection and
investigation

• Inappropriate Insider Activity: the problem, the cure?

• Ethics

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Describe the importance of the manager’s role in securing an organization’s
use of information technology and explain who is responsible for protecting an
organization’s information assets

 Explain the unified contingency plan approach
 Discuss the process of developing, implementing, and maintaining, various

types of information security policies
 List and describe the functional components of an information security program

List and describe the typical job titles and functions performed in the
information security program

 Discuss the components of a security education, training, and awareness
program and explain how organizations create and manage these programs

Prerequisites: Any 12 credits at the 3000-level

EECS 4491 3.00 Simulation and Animation for Computer Games

This course presents the conceptual foundation of simulation and animation methods
used in the Digital Media industry, including computer games. Students will get an
understanding of the theory and techniques behind making objects "move" in an
interactive environment. The course covers all aspects, including manual animation,
(semi-)automatic animation through simulation of the movement of linkages and body-
parts, animation through recordings of real motions (motion capture), the simulation of
physics for rigid bodies, liquids, gases, plants, and deformations, as well as
combinations of these methods.

Topics covered:

• Principles of "Classic" Animation

• Spaces, Transformations, and Rotations

• Interpolation Methods

• Interpolation-Based Animation

• Kinematic Linkages

• Inverse Kinematics

 114

• Motion Capture

• Physically Based Animation

• Liquids & Gases

• Modelling and Animating Human Figures

• Facial Animation

• Modelling Behaviour

• Special Models for Animation

Learning Outcomes for the course:

After successful completion of this course, students are expected to be able to
understand the concepts behind and to implement:

 various interpolation methods to move objects in a virtual
 environment in a believable manner
 a system to simulate rigid, animated objects
 movement of animated figures consisting of multiple limbs
 examples of physically based animations, such as particles,
 liquids and deformations.
 simple methods for motion capture and interpolation for captured
 motion data.

Prerequisites: General prerequisites; LE/EECS3431 3.00, SC/MATH1310 3.00

EECS 4611 4.00 Advanced Analog Integrated Circuit Design
The course presents advanced design techniques for the realization of high-
performance analog integrated circuits in modern technology. In particular, high-
speed and low-noise amplifiers are targeted along with certain nonlinear components
employed in discrete-time signal processing and narrowband applications. The
features and limitations of modern semiconductor devices are presented and the
means of abstracting these to compact models applicable to hand design are outlined.
A number of feedback system analysis and design techniques are presented
(compensation, dominant-pole, root locus) and applied to wide-band amplifier
realization. The origin of noise in electronic components is reviewed and means of
mitigating it through circuit design explained. Key nonlinear analog device behaviour
are highlighted and applied to the design of critical nonlinear circuitry such as
switches, comparators, mixers, output stages, and power amplifiers. Means by which
robust designs treat component variability are addressed.

Topics covered:

 115

1. Short-channel MOS, bipolar, and passive device models in modern
technology

2. Review of fundamental amplifier stages in the context of modern technology
3. Design for variability
4. Principles of feedback systems:
5. Wide-band amplifier design
6. Principles of random electronic noise
7. Low-noise amplifier design
8. Analog switches
9. Nonlinear analog circuits

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Characterize and abstract the behaviour of modern electronic devices into
compact models for the purpose of analog circuit design.

 Understand and design stabilization strategies for wide-band amplifiers.
 Understand and implement techniques for the realization low-noise amplifiers.
 Analyse and design high-speed analog switching amplifiers.
 Verify the behaviour of high-performance designs using simulation and

experimental techniques.
Prerequisite: General prerequisites, LE/EECS3611 4.00

EECS 4612 4.00 Digital Very Large Scale Integration
(integrated with CSE5612 3.00)

The objective of this course is to introduce the students to the design of large-scale
integrated semiconductor digital systems and to promote the application of their
acquired knowledge in the synthesis of their own integrated system. The course
lectures review, introduce, and detail the key components of these systems
(transistors, gates, arithmetic units, hardware description languages, memories, I/O
elements) while the initial laboratory sessions give the students hands-on exposure to
the construction of a large digital system. This laboratory experience spans the
essential constituents of the VLSI design hierarchy including standard cell layout,
datapath arrangement, control unit design, floorplanning, place and route, and
verification. The students also gain substantial computer experience with industry-
standard VLSI CAD tools as part of their laboratory work. The remaining lab sessions
are used to help the students apply the knowledge and techniques acquired in the
course to design and complete a custom VLSI system of their own choosing. Besides
presenting and detailing purely engineering science concepts related to physical circuit
understanding and analysis the course presents classical design concepts critical
to successful system realization including VLSI design methodology, circuit design
trade-offs, manufacturing considerations and the economics of IC fabrication.

Topics covered:

1. VLSI chip design methodology: Engineering design emphasis on design
methods and design flows in structured design strategies: hierarchy,
regularity, modularity, design partitioning, floorplanning. The coding of large

 116

systems using hardware description languages. Layout design rules,
technology related CAD issues, manufacturing issues. IC design economics.

2. MOS transistor structure and operation: Engineering science emphasis on
fundamental operation and physical relations. Engineering design emphasis
on fabrication tradeoffs and the mitigation of nonidealities in nanoscale
components, layout of transistors and standard cells.

3. Transistor models for digital design: Engineering science emphasis on
semiconductor device approximation and the utilization of this approximation
to the first-order design of optimal digital circuit elements.

4. Combinational and sequential circuit design: Engineering science focus
on the analysis of mainstream digital families and timing circuits. Engineering
design focus on means of mitigating critical nonidealities encountered in
contemporary systems including leakage, power supply noise, hot spots,
process sensitivity, clock skew, metastability, etc.

5. Power: Engineering science discussion of power consumption fundamentals
and its calculation in modern VLSI systems. Engineering design
considerations for power mitigation and low-power architectures.

6. Interconnect: Engineering science discussion of guided signals on
semiconductors. Engineering design of interconnect and its mitigation (e.g.
repeaters, crosstalk control, etc.)

7. Datapath components: Engineering design of advanced arithmetic and data
manipulation components (adders, comparators, shifters, multipliers).

8. Memory components: Engineering design of on-chip memories, SRAM,
serial access memory, content-addressable memory, programmable logic
arrays, robust memory design.

9. Testing and Verification: Engineering design methods and techniques for
logic verification, silicon debug techniques, manufacturing test principles.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Demonstrate knowledge of the contemporary VLSI design methodology and be
able to cogently describe the main steps of a VLSI design flow.

 Demonstrate the ability to approximate the physical size of an integrated VLSI
circuit given sufficient structural and technological information.

 Discuss contemporary VLSI design IC technologies (fabrication, structure, and
applications) and be able to mathematically articulate how they work and what
their electronic capabilities and drawbacks are.

 Demonstrate the ability to simplify advanced IC technologies into basic circuit
models capable of providing sufficient approximations for first-order digital
circuit analysis.

 Demonstrate the ability to optimize a variety of digital circuits for energy-delay
performance.

 Demonstrate the ability to design and synthesize semi-custom hardware sub-
systems such as state machines, memories, logic arrays, busses, etc. in a
modern IC technology from a library of standard cells.

 117

 Demonstrate the ability to apply hardware design languages for the realization
of complete integrated VLSI systems through hands-on practice with non-trivial
(greater than 10,000 gates) examples and custom designs.

 Refining the ability to analyse the performance of VLSI systems using
established criteria such as latency, throughput, operational energy
consumption as well as newly emphasized issues such as power management
and clock distribution.

 Demonstrate an understanding of the means of verifying the operation of
complex digital ICs.

 Gaining expertise in state-of-the-art custom IC design tools.
 Create a practical VLSI project work plan and meet designated deadlines

towards that plan.
 Effectively communicate a personal design in person and in the form of a

written report.

Prerequisites: General prerequisites, LE/EECS2200 3.00, LE/EECS2210 3.00,
LE/EECS3201 4.00

EECS 4613 4.00 Power Electronics
This course focuses on the basic operating principles of the power conversion using
advanced electronic devices. The structure and characteristics of switching devices
are first reviewed. Basic semiconductor devices used in power electronics circuits are
discussed. Fundamental power converters such as AC/DC rectifiers, DC/DC switching
converters and voltage source DC/AC inverters are studied. Resonant power
converters and inverters are introduced. Weekly laboratory/tutorial.

Topics include:

1. Switching devices in power electronics: Introduction to power
electronics, types of power conversion, concepts of switching losses and
conduction losses, power efficiency, characteristics of different
semiconductor devices: diodes, thyristors, MOSFETs, BJTs, IGBTs, GTOs,
IGCTs.

2. Single-phase AC/DC uncontrolled rectifiers: Introduction to single-phase
AC/DC diode rectifiers, operating principles of diode rectifiers with capacitive
filter or LC filter, mathematical analysis of diode rectifiers including RMS
input current, input apparent power, average power, input power factor, total
harmonics distortion.

3. Three-phase uncontrolled AC/DC rectifiers: Introduction to three-phase
AC/DC diode rectifiers, three-phase diode rectifiers with capacitive filter,
three-phase diode rectifiers with LC filter, mathematical analysis including
average output voltage, RMS input current, average power and input power
factor.

4. Single-phase AC/DC controlled rectifiers: Introduction to single-phase
AC/DC controlled rectifiers using thyristors, operating principles of diode
rectifiers with capacitive filter or LC filter, mathematical analysis of controlled

 118

rectifiers including RMS input current, input apparent power, average,
power, input power factor, total harmonics distortion.

5. DC/DC converters: Introduction to three basic DC/DC converters: buck
(step-down) converter, boost (step-up) converter and buck-boost (step-
up/down) converter, operating principles in continuous conduction mode,
boundary conduction mode, discontinuous conduction mode, voltage gain
characteristics of the three basic DC/DC converters, mathematical analysis
of the DC/DC converters including switching and conduction losses
calculation, power efficiency, design of the converter.

6. Isolated DC/DC converters: Discuss the basic isolated DC/DC converters
and their operating principles, these converters include: flyback converter,
forward converter, half-bridge converter, full-bridge converter and push-pull
converter, investigate the voltage gain characteristics, advantages and
disadvantages of these converters.

7. Single-phase DC/AC inverters: Discuss the operating principles of basic
DC/AC inverters, introduces the basic modulation techniques in DC/AC
inverters: single pulse-width modulation, multiple pulse-width modulation and
sinusoidal pulse-width modulation, operating principles of full-bridge DC/AC
inverters with different types of output filters.

8. Resonant DC/DC converters and resonant DC/AC inverters: Introduction
to resonant power conversion, discuss the three basic types of resonant
circuits: series resonant, parallel resonant and series-parallel resonant,
introduce the concepts of zero-voltage-switching (ZVS) and zero-current-
switching (ZCS), discuss the basic operating principles of above and below
resonance operations.

9. Applications of power electronics: Introduction to several applications of
power electronics, include AC/DC converters for active power factor
correction, DC/DC converters for isolated switch mode power supply and
DC/AC inverters for induction heating, motors, fluorescent lighting.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Understand the basic operating principles of power conversion in power
electronics

 Understand the operating principles of AC/DC rectifiers, DC/DC converters,
DC/AC inverters

 Demonstrate the ability to mathematically compute average and RMS value,
average power, power factor and total harmonics distortion

 Demonstrate the ability to mathematically compute switching losses,
conduction losses, and power efficiency

 Demonstrate the ability to determine the suitable control method for the
corresponding converter or inverter.

 Derive mathematical equations that characterize the voltage gain of basic
DC/DC converters.

 Demonstrate the ability to draw steady-state operating waveforms of AC/DC
rectifiers, DC/DC converters, DC/AC inverters

 119

 Understand the features and drawbacks of different isolated DC/DC converters
 Understand the basic operating principles of resonant power conversion.

Demonstrate the ability to design simple power electronic circuits for real-life
applications.
Prerequisites: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS2210 3.00
Co-requisites: LE/EECS3603 4.00

EECS 4614 4.00 Electro-Optics
The objective of this course is to provide the students with an understanding of the
basic concepts of light-matter interaction and control of light propagation with
emphasis on modern technological applications. It continues from the notions of the
electromagnetic nature of light and Maxwell’s equations, and applies these concepts to
classical applications in optics such as light propagation at boundaries with metals and
dielectrics. Light-matter interactions are discussed throughout the course and
fundamental concepts of semiconductor physics are introduced as needed. The
course contents span a broad range of topics to provide knowledge of the most
important building blocks of electro-optic systems used, for example, in imaging,
display, telecommunication and sensing applications.

Topics covered with approximate schedule:

• Week 1: Electromagnetic description of light – in free space and at
boundaries, dispersion, absorption

• Weeks 2-3: Light polarization & crystals – polarization, Jones matrices,
birefringence, Faraday effect, liquid crystals

• Weeks 4-5: Guided light – planar & strip waveguides, optical coupling,
optical fibers, pulse propagation and compensation

• Weeks 6-7: Light amplification – energy levels in matter, discrete absorption
& emission, luminescence, light amplification, continuous & pulsed lasers

• Weeks 8-9: Light in semiconductors – semiconductor basics, carrier
distribution, electron-hole creation & recombination, pn junctions, light-
emitting diodes, photodetectors

• Weeks 10-11: Optical modulators – electro-optic modulators, directional
couplers, electro-optics in anisotropic media, Bragg diffraction and acousto-
optic modulators

• Week 12: Nonlinear optics – nonlinear optical media, higher-harmonic
generation, wave mixing, white light generation

Engineering design will also be emphasized throughout the course in the description of
practical applications of the technologies presented and through practical design
problems in the lab. The laboratory modules (three-hour weekly) include practical

 120

and/or simulation & design activities in topics such as: polarization of light,
waveguides, optical fibers, lasers and optical modulators.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Demonstrates understanding of light propagation in matter and interfaces, and
can numerically simulate the behaviour in multilayers

 Demonstrates understanding of light polarization and guiding, and can design
means to control them

 Comprehends light absorption and emission, and the necessary conditions for
light amplification

 Comprehends the basics of semiconductor lasers operation and design
 Understand how to combine the constraints for higher harmonic generation

through practical design
 Demonstrates the ability to combine several electro-optical building blocks by

designing waveguide-based or waveguide-coupled lasers, photoreceivers and
modulators

 Demonstrates practical hands-on skills in applying in the lab the principles
thought in class

Prerequisites: General prerequisites, LE/EECS 2030 3.00 or LE/EECS 1030 3.00,
LE/EECS 3604 or SC/PHYS4020; LE/EECS2210 or SC/PHYS3150

EECS 4622 4.00 Introduction to Energy Systems
This is an introductory course for energy systems. It covers the basic construction,
modelling and analysis techniques in electricity generation, transmission and
distribution. Detailed description for the topics covered in this course are hereunder:

1. Course topics and their detailed contents:

Topic Details
Introduction Overview of energy systems structure:

generation, transmission and Distribution.
Review of the fundamental analysis
techniques including:
Review of phasors in sinusoidal steady
state circuit analysis; RMS quantities;
Concept of active and reactive power;
load power factor correction, three phase
operation. Review of the steady-state
modelling and performance of
generators, transformers and motors.

Steady-state modelling and performance Complex power in balanced TL;

 121

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Have a clear definition about the basic concepts such as complex power,
single line diagrams, per unit quantities.

 Power system model to include different components –generator –transformer
–static and –dynamic loads.

 Differentiate the steady-state modelling for different types of transmission lines
(short, medium, and long) and (overhead versus underground cables).

 Analyse the steady-state performance of transmission lines.

of transmission lines (TL) Equivalent Circuits of TL (resistance,
inductance, capacitance); TL parameters
and modelling (short, medium, long);
ABCD constant calculation; Effect of
system voltage on transmission
efficiency; Choice of transmission
voltage. Environmental Effects of
Overhead Transmission lines, Radio and
audible noise effects on power lines.
Mechanical design of transmission lines.
Overhead line insulators.

Single line diagrams and per-unit
systems

Single line diagrams for three phase
power networks; calculations of per- units
for power networks.

Admittance and impedance bus matrix Formulate the admittance and impedance
bus model for power networks

Load flow analysis To perform power flow studies by
different methods (Gauss-Siedel and
Newton-Raphson) and use it to perform
system design and operations using
digital computer programs.

Fault (short circuit) analysis Perform analysis for symmetrical and
unsymmetrical faults and use it to design
protection devices. Digital computer
software will be used for the network fault
analysis.

Dynamic Stability Different forms for power system dynamic
such as steady state-transient
and dynamic stability.

Introduction to
Distribution
Systems

Topologies of distribution systems (Radial
and ring main system); D.C. distribution;
A.C. distribution; introduction to active
distribution systems with high penetration
of distributed and renewable energy
resources.

 122

 Formulate the admittance and impedance bus model for power networks.
 To perform power-flow studies by different methods and use it to perform

system design and operations using digital computer programs.
 Perform analysis for symmetrical and unsymmetrical faults.
 Understand the different forms for power system dynamic such as steady

state-transient and dynamic stability.
 Understand the different topologies of distribution systems and introduce the

concept of active distribution systems with high penetration of distributed and
renewable energy resources.

Prerequisites: General prerequisites, LE/EECS2200 3.00, LE/EECS3603 3.00,
SC/PHYS2020 3.00

EECS 4641 4.00 Introduction to Medical Devices and Biological Instruments

This course builds on the foundation in measurement techniques by developing the
students’ understanding of electrophysiological sensing systems and biosensors used
within the medical and biological fields. This course applies the knowledge of
electronic circuits and systems techniques to the development of medical devices and
biological instruments. Background in electronic circuit design, basic knowledge of
human physiology and body system, and basic knowledge of cellular and molecular
biology are required before taking the course. In the design of each medical device or
biological instruments, students are also introduced the related theoretical and
practical issues with a focus on needs assessment, creativity, and innovation as they
seek to identify market opportunities. A detailed list of topics covered within this course
is as follows.
I. INTRODUCTION TO MEDICAL DEVICES AND BIOLOGICAL

INSTRUMENTATION (0.5 Week)
a. Medical devices
b. Biological Instruments

II. PRINCIPLES OF BIOSENSORS (2.5 Weeks)
a. Fundamental of Sensors
b. Design of Biosensors

III. MEDICAL DEVICES (5 Weeks)
a. Electrophysiological Medical Sensing Devices
b. Design of Point-of-Care Medical Devices

IV. BIOLOGICAL INSTRUMENTATION (2.5 Weeks)
a. Design of Biological Instruments

V. EMERGING MEDICAL DEVICES AND BIOLOGICAL INSTRUMENTATION (1
Week)

a. Biometric Technologies
i. Fitness Applications

b. Implantable Sensors
i. Brain-Interface Machine

c. Wearable Sensors
i. Contact lens

 123

d. Advanced Bioinstrumentation Technologies
i. Lab-on-Chips

VI. STATE OF ART TECHNOLOGY: FROM INNOVATION TO MARKET (0.5 Week)
a. Challenges of biomedical small businesses
b. Safety and regulatory issues

Three lecture hours and three laboratory hours each week. The mandatory laboratory
applies the design and implementation concepts to representative medical devices
and biological instruments chosen from described devices.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Develop an understanding of electrical measurement techniques including
EEG, EMG and ECG.

 Develop an understanding of biosensors and point-of-care techniques used for
early detection or control of diseases such as diabetes and cancer.

 Develop an understanding of biological instruments such as cell counter,
biological electrical activities’ recording and stimulation

 Be able to analyse and design biomedical measurement systems.
 Develop an understanding of the safety and regulatory issues pertinent to

medical devices.
 Develop an understanding of advanced technologies such as microfluidics and

Lab-on-Chips.

Prerequisites: General prerequisites, LE/EECS 2210 4.0, LE/EECS 3215 4.0, BIOL
1000 3.0*

* Note, a new science elective course covering the basic topics of biological and
health sciences is being designed by Kinesiology in consultation with EECS to be
offered as one of the prerequisites of this course. In the short term BIOL1000 3.00 will
serve as an adequate substitute prerequisite until the specialized course is mounted.

EECS 4642 4.00 Medical Imaging Systems
This course will provide an introduction to several of the major imaging modalities
including X-ray, ultrasound and magnetic resonance technologies. The students will
learn the fundamental, operation and basic design of medical imaging
instrumentations. This course applies the classical knowledge of physics, signal and
systems techniques to the development of various medical imaging technologies.
Background in the design of medical devices; electronic circuit, and systems; basic
knowledge of human physiology, and basic knowledge of physics are required before
taking the course. Topics include the physics of radiography; fundamental of X-ray
projection radiography and X-ray computed tomography (CT); fundamental of
ultrasound imaging techniques and ultrasound imaging systems; and introduction of
nuclear medical resonance and MRI system.

 124

1. Overview of various medical imaging techniques for disease diagnostics
2. Radiography

a. Physics of Radiography
b. X-ray instrumentation
c. Basics of X-ray computed tomography (CT)
d. CT Image reconstruction and Image quality
e. Major medical applications

3. Ultrasound
a. Physics of ultrasound techniques
b. Ultrasound imaging system and Image analysis
c. Applications for medical diagnostics

4. Magnetic resonance
a. Fundamental of Magnetic Resonance
b. Nuclear Magnetic Resonance (NMR)
c. Design and Implementation of NMR system
d. Magnetic resonance imaging (MRI) Instrumentation
e. MRI data acquisition, imaging reconstruction, image quality
f. Functional magnetic resonance imaging (fMRI)
g. Medical Applications of NMR, MRI and fMRI

5. Fundamentals of medical image processing techniques
6. Advanced medical imaging technologies and market challenges

Three lecture hours and three laboratory hours each week. The mandatory laboratory
applies the analysis of medical images captured from available medical imaging
instrumentations in York University.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Explain the physics of medical imaging systems.
 Design circuits and systems for medical imaging systems.
 Explain medical image processing techniques and clinical applications of

medical imaging systems
 Employ medical imaging systems and apply low complexity image processing

techniques.
 Compare and evaluate advanced medical imaging technologies.

Prerequisites: General prerequisites, LE/EECS2210 3.00, LE/EECS3602 4.00 or
LE/EECS3451 4.00

EECS 4643 4.00 Biomedical Signal Analysis
The sensing, detection, processing, estimation and classification of biological signals
are core to biomedical engineering and important in human-machine interaction,
biological engineering, agriculture and other applications. This course applies discrete-
time and continuous-time theory to the processing of biomedical signals that can be
used to infer the physiological state of a living organism. Background in linear systems

 125

theory in both discrete and continuous time is required before taking this course.
Topics will be selected from the following list and applied in the context of a variety of
physiological signals:

1. Origins of biomedical signals, noise and need for signal processing
2. Review of deterministic signal processing
3. Stochastic processes
4. Time domain analysis and feature extraction
5. Classical spectral analysis
6. Noise reduction and filtering
7. Time-Frequency and Wavelet Analysis
8. Multidimensional and multivariate signal processing
9. Electrical activity of the body: EEG, evoked potentials and event related

potentials
10. Other biomedical signals: blood pressure, respiration, acoustic
11. Classification of signals
12. Applications to medical devices, human-computer interaction and

physiological modelling

Three lecture hours and three laboratory hours each week. The mandatory laboratory
applies concepts to representative biomedical signal processing problems.

Learning Outcomes for the course:
After successful completion of the course, students are expected to be able to:

 Understand the processes relating biological signals to their physiological
origins, their stochastic nature and the need for signal processing

 Extend existing signal processing skills to multivariate, multichannel and
stochastic signals

 Assess, choose and implement methods to extract features of interest in
biological signals or to classify normal and abnormal signals

 Implement appropriate signal processing algorithms to filter and enhance noisy
biological signals

 Design signal processing solutions for important application domains such as
physiological monitoring, diagnosis, and human-machine interfaces (e.g. for
prosthetics)

Prerequisites: General prerequisites, LE/EECS 3602 4.00 or LE/EECS 4452 3.00

EECS 4700 6.00 Digital Media Project

This is an honours thesis course in Digital Media. Although a course coordinator will
be assigned to the course, the bulk of the course will take place through the interaction
between a supervisor and the group of students. After two organizational meetings in
September, the students will work with their supervisor directly. The course requires
an initial project proposal that will be submitted to and approved by the supervisor and

 126

the course coordinator (director). This is, in essence, a contract for the project to
follow. The supervisor will evaluate the performance of the students in early January.
The format of this evaluation will vary from project to project, but the requirements of
this evaluation will be specified in the original project proposal. At the beginning of the
course, the course director (coordinator) will establish a date and format for the public
presentation of all Digital Media projects. Normally held between reading week and the
third last week of term, this presentation will normally consist of either a short public
oral or poster presentation of the project. (The actual format may change from year to
year.) All of the faculty associated with the Digital Media program will be invited to
attend this presentation. The individual supervisor will mark this presentation and the
final report due at the end of the term.

The actual nature of the project will vary from student to student. Projects will involve
the design, implementation and evaluation of a Digital Media work. The expectation is
that all projects will involve creation of a digital media artefact and possibly also the
evaluation of human interaction with the product, including an analysis of these results
in the presentation and final report. For projects that will involve significant subject
testing and performance evaluation, it is expected that a complete draft
implementation of the system will be available by January. Supervisors may be faculty
from either the Department of Electrical Engineering and Computer Science or the
Faculty of Fine Arts or the Communication Studies program of the Division of Social
Science, Faculty of LA&PS.

Marking Scheme:
Mid-term evaluation: 30%
Public presentation evaluation: 30%
Final report: 40%

Prerequisites: Only open to students in the final year of the Digital Media program.
Course Credit Exclusions: LE/EECS4080 3.00; LE/EECS4081 6.00; LE/EECS4082
6.00; LE/EECS4084 6.00, LE/EECS4088 6.00, LE/EECS4480 3.00

Access to Courses
York Enrolment System
Students enrol in courses using the Registration and Enrolment Module (REM), via a
Web interface, typically in the few months prior to the start of each term. EECS
courses occasionally reach their class size maximum, in which case the following
procedures are followed. (See http://eecs.lassonde.yorku.ca/current-
students/undergrads-courses/requirements-faq/enrollment-guides/ for an expanded
description and interpretation of the enrolment policy outlined below.)

Application to the Waiting List towards maintaining Normal Progress
We are committed to ensuring that students majoring in Computer Science, Computer
Security, Digital Media, Computer Engineering, Software Engineering and Electrical
Engineering can make timely progress towards meeting their degree requirements.

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/requirements-faq/enrollment-guides/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/requirements-faq/enrollment-guides/

 127

However, students who wish to take more EECS courses than they need to—for
example, to accelerate their studies—or who wish to repeat a course that they
either dropped or in which they obtained unsatisfactory grades in a preceding
term, will only be accommodated if space permits.
Normal progress is consistent with completion times of four and three years for full-
time students in the Honours and Bachelor degree programs respectively. This entails:
 Normally taking 1000/2000-level courses in calendar year one, 2000/3000-level in

calendar year two, etc.
 Taking up to a total of three courses per term (four in the cases of engineering

majors due to their heavier degree requirements) that are any combination of 2000-
3000- and 4000-level courses that the prerequisite structure permits.

 When close to graduation, being able to take necessary courses within the limits
specified above.

Limits on Course Enrolment
A maximum combined number of three (four for engineering) 1000- 2000- 3000- or
4000-level EECS courses are permitted in any given fall or winter term, subject to
prerequisites being met. In the summer term students are not permitted to take more
than a maximum of two EECS courses.

Removal from Courses
If any student enrols in more than the allowed number of courses per term they will be
de-enrolled from whichever courses the Department requires space.

Prerequisites
Students are responsible for being aware of the prerequisites of the EECS
courses into which they plan to enrol, and for ensuring that they enrol only if
they meet the prerequisites. Most prerequisites include a minimum cumulative GPA
(4.5) over all computer science courses completed. In the course of prerequisite
auditing that the Undergraduate Office performs—a process that starts at the
beginning of each term—students will be removed from a course if the audit
determined that they do not meet the prerequisites. Due to the manual and time
consuming process of prerequisite auditing, removal from courses in the case of non-
compliance may take place at any time before the start, or during the course. As such,
it is imperative that students review the prerequisites of their selected courses.
Students who are de enrolled are notified by email. No de-enrolment action will be
reversed unless it is in error.
Courses taken outside the Department
Students wishing to take Computer Science courses at another institution should
submit a Letter of Permission (LOP) to the University (on line:
http://www.registrar.yorku.ca/enrol/lop). For EECS courses the LOP will be sent by the
Registrar’s Office to the department for adjudication. For the purpose of satisfying
degree requirements, the number of computer science course (EECS courses) credits
taken outside the Department of Electrical Engineering and Computer Science may
not exceed 6 credits in core computer science courses, and 12 EECS credits in total,

http://www.registrar.yorku.ca/enrol/lop

 128

for the duration of the student’s program of study. Transfer Credit assessed at the
point of Admission is included as credit taken outside the Department.

Definition of Core Courses
These are courses required in all degree programs in Computer Science and
Computer Security. The core computer science courses are EECS1001, EECS1019,
EECS1012, EECS1022, EECS2030, EECS2001, EECS2011, EECS2021, EECS2031,
EECS3101, and EECS3311. Core mathematics courses are MATH1300 3.00,
MATH1310 3.00, and MATH1090 3.00.

Normal Order of Study
This section presents a summary of course requirements only for the computer
science programs, by suggesting the normal order in which courses should be taken.
See also under the heading “Limits on Course Enrolment”. Students are strongly
encouraged to consult the checklists for each program type (computer science,
computer security, digital media and computer engineering) at the end of this calendar
(hard copy version) or on-line at the URL
 http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/

Archived checklists for previous years, and earlier versions of the supplemental
calendar are found at the URL http://eecs.lassonde.yorku.ca/current-
students/undergrads-courses/eecs-supplemental-calendars/

The terms “first year”, “second year”, etc., below indicate the year of study for normal
progress by full-time students in a computer science degree. We note that progress in
one’s program of study is not based on year of study but rather on attainment of the
prerequisites. Thus the following is an illustration only.

1000-level — first year
• Fall — EECS1001 1.00, EECS1012 3.00, EECS1019 3.00, MATH1300 3.00.
• Winter — EECS1001 1.00 (continued from the fall term – this course meets

once every two weeks and spans fall and winter terms) EECS1022 3.00,
MATH1310 3.00.

• Additional credits toward satisfying general education, Faculty requirements,
second major program, or elective requirements for an approximate grand
total of 30 credits.

• Normal progress is one EECS course per term (in the context of this
restriction 1019 or 1028 are viewed as MATH courses, and 1001 does not
add to the count, due its small credit weight).

2000-level — second year

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/

 129

• EECS2030 3.00, EECS2001 3.00, EECS2011 3.00, EECS2031 3.00;
MATH1090 3.00. 8

• Specialised Honours: MATH1025 3.00, MATH2030 3.00.
• Other Honours programs: MATH2030 3.0.
• Additional credits toward satisfying general education, Faculty requirements,

second major program, or elective requirements for an approximate grand
total of 30 credits.

• Normal progress is three EECS courses per term.
3000-level — third year

• 12 EECS credits minimum at the 3000-level satisfying the breadth
requirement — EECS3101 3.00, EECS3311 3.00, and one of EECS3221
3.00 or EECS3215 4.00.

• 3 credits from among EECS3401 3.00, EECS3421 3.00, EECS3461 3.00.
• All BA and BSc Honours (120-credit) programs: EECS3000 3.00.
• BA and BSc (90-credit) programs: 6 additional EECS 3000-level credits.
• BA and BSc Specialised Honours programs: 3 additional EECS 3000-level

credits
• Additional credits toward satisfying general education, Faculty requirements,

second major program, or elective requirements for an approximate grand
total of 30 credits.

• Normal progress is three EECS course per term.

4000-level — fourth year, honours programs only
• 12 EECS credits at the 4000-level (except for the Honours Minor BA degree

which normally requires a maximum of 6 credits at the 4000-level), including
one of EECS4101 3.00 or EECS4111 3.00 or EECS4115 3.00 for the
Specialised Honours programs.

• 6 additional EECS credits at the 3000- or 4000-level for Specialised Honours
programs.

• Additional credits toward satisfying general education, Faculty requirements,
second major program, or elective requirements for an approximate grand
total of 30 credits.

• Normal progress is three EECS courses per term.

Prerequisites for all EECS Courses
In exceptional circumstances some prerequisites or co requisites may be waived at the
discretion of the undergraduate director in consultation with the course director, where
it emerges that the student has equivalent academic preparation. All petitions to have

8 Although MATH1090 is not a 3000-level general prerequisite it is required for some 3000-level
core courses and therefore students should plan to complete it in year two.

 130

pre- or co requisites waived must be submitted to the undergraduate office. Course
directors may not waive prerequisites.
It is required that students fulfil the prerequisites for courses they wish to take.
There are both general prerequisites that are required for most EECS courses at the
specified level and specific prerequisites for each course that are in addition to the
general prerequisites. Both types of prerequisites include EECS courses and
mathematics courses, and there may be grade requirements in the prerequisite
courses. The prerequisites are listed after each course description and summarised in
the following tables.
The prerequisites table is useful to determine what courses must be taken in order to
enrol in a particular course, or to determine if you are permitted to enrol in a course.

Important: Here and in the main Calendar of York University we normally use
transitivity to abbreviate the chain of prerequisites listed. For example, the phrase
“General prerequisites, EECS2011 3.00, …” means “General prerequisites, EECS
2030 or EECS 1030 3.00, EECS1019 3.00 or EECS1028 3.00, EECS2011, …” where
bolded is the implied part that we omitted in the short version.

Course Title Prerequisite(s)9
1000-Level

EECS1001 1.00 Research Directions in Computing See course description
EECS1011 3.00 Computational Thinking through

Mechatronics
See course description

EECS1012 3.00 Introduction to Computing: A Net-
centric Approach

See course description

EECS/MATH1019
3.00

Discrete Mathematics for
Computer Science

MATH1190 3.00, or two
4U courses including
MHF4U (Advanced
Functions)

EECS1021 3.00 Object Oriented Programming
from Sensors to Actuators

EECS1011 3.00

EECS1022 3.00 Programming for Mobile
Computing

EECS1012 3.00

EECS/MATH1028
3.00

Discrete Mathematics for
Engineers

MHF4U and MCV4U

EECS1710 3.00 Programming for Digital Media See course description
EECS1720 3.00 Building Interactive Systems EECS1710 3.00

9 A comma or a semicolon is interpreted as an “and” in a prerequisite list (unless this is
overridden by a phrase such as “one of”).

 131

General Prerequisites, defined for all 2000- 3000- and 4000-level courses:

•A cumulative gpa of 4.5 or higher over all EECS major courses completed.

2000-Level

EECS2001
3.00

Intro. to the Theory of Computation General prerequisites,
EECS1021 3.00 or
EECS1022 3.00 or
EECS1720 3.00 or
EECS1030 3.00;
EECS1019 3.00 or
EECS1028 3.00

EECS2011
3.00

Fundamentals of Data Structures General prerequisites,
EECS2030 3.00 or
EECS1030; EECS1019
3.00 or EECS1028 3.00

EECS2021
4.00

Computer Organization General prerequisites,
EECS1021 3.00 or 1022
3.00 or 1720 3.00 or 1030
3.00

EECS2030
3.00

Advanced Object Oriented
Programming

General prerequisites,
LE/EECS1021 3.00 or
LE/EECS1020 3.00 or
LE/EECS1022 3.00 or
LE/EECS1720 3.00

EECS2031
3.00

Software Tools General prerequisites,
EECS2030 3.00 or
EECS1030 3.00

EECS 2200
3.00

Electrical Circuits General prerequisites,
SC/PHYS1010 6.00 or
SC/PHYS1801 3.00

EECS 2210
3.00

Electronic Circuits and Devices General prerequisites,
EECS2200 3.00

EECS2311
3.00

Software Development Project General prerequisites,
EECS2030 3.00 or
EECS1030 3.00

EECS2602
4.00

Signals and Systems in Continuous
Time

General prerequisites,
MATH1014 3.00,
MATH1025 3.00

3000-Level

 132

Theory and Numerical Computation Specific Prerequisites
EECS3101 3.00 Design and
Analysis of Algorithms

General prerequisites, EECS2011 3.00,
MATH1090 3.00, MATH1310 3.00

EECS3121 3.00 Intro. to Numerical
Computations I

One of EECS1540 3.00, EECS2031 3.00,
EECS2501 1.00; one of MATH1010 3.00,
MATH1310 3.00, or MATH1014 3.00; one of
MATH1021 3.00, MATH1025 3.00, or
MATH2221 3.00

EECS3122 3.00 Intro. to Numerical
Computations II

EECS3121 3.00

Systems
EECS3201 4.00 Digital Logic Design General prerequisites, LE/EECS 2030

3.00 or LE/EECS 1030 3.00, EECS2021
4.00, EECS2200 3.00

EECS3213 3.00 Communication
Networks

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00, MATH1310
3.00

EECS3214 3.00 Computer Network
Protocols and Applications

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00

EECS3215 4.00 Embedded Systems General prerequisites; LE/EECS 2030
3.00 or LE/EECS 1030 3.00; EECS2031
3.00, EECS3201 4.0

EECS3221 3.00 Operating
System Fundamentals

General prerequisites; LE/EECS 2030
3.00 or LE/EECS 1030 3.00; EECS2021
4.00, EECS2031 3.00

Software Development
EECS3301 3.00 Programming
Language Fundamentals

General prerequisites, EECS2011 3.00,
EECS2001 3.00

EECS3311 3.00 Software Design General prerequisites, EECS2011 3.00,
EECS2031 3.00, MATH1090 3.00

EECS 3342 3.00 System Specification
and Refinement

General prerequisites, EECS2011 3.00,
MATH1090 3.00

Applications
EECS3401 3.00 Introduction to
Artificial Intelligence and Logic
Programming

General prerequisites, EECS2011 3.00,
MATH1090 3.00

EECS3403 3.00 Platform Computing General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00

EECS3421 3.00 Introduction to
Database Systems

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00

EECS3431 3.00 Introduction to General prerequisites, LE/EECS 2030

 133

3D Computer Graphics 3.00 or LE/EECS 1030 3.00,
MATH1025 3.00

EECS3451 4.00 Signals and Systems General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
EECS2021 4.00; MATH1310 3.00

EECS3461 3.00 User Interfaces General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00

EECS3481 3.00 Applied Cryptography General prerequisites, EECS2011 3.00
EECS3482 3.00 Applied Cryptography Any 12 university credits at the 2000-

level in any discipline

Other Courses:
EECS3000 3.00 Professional Practice
in Computing

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00

Electrical Engineering Courses:
EECS3602 4.00 Systems and Random
Processes in Discrete Time

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
EECS2602 4.00

EECS3603 4.00 Electromechanical
Energy Conversion

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
EECS2200 3.00, SC/PHYS2020 3.00

EECS 3604 4.00 Electromagnetic
theory and wave propagation

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
SC/MATH1014 3.00, SC/MATH1025
3.00, SC/PHYS2020 3.00

EECS 3611 4.00 Analog Integrated
Circuit Design

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
EECS2210 3.00

EECS 3612 4.00 Introduction to
Sensors and Measurement
Instruments

General prerequisites, LE/EECS 2030
3.00 or LE/EECS 1030 3.00,
EECS2210 3.00

4000-Level

Theory Courses Specific Prerequisites
EECS4101 3.00 Advanced Data Structures General prerequisites, LE/EECS

2030 3.00 or LE/EECS 1030 3.00,
EECS2001 3.00, EECS3101 3.00

EECS4111 3.00 Automata and Computability General prerequisites, LE/EECS

 134

2030 3.00 or LE/EECS 1030 3.00,
EECS2001 3.00, EECS3101 3.00

EECS4115 3.00 Computational Complexity General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
EECS2001 3.00, EECS3101 3.00

EECS4161 3.00 Introduction to Cryptography At least 12 credits from 2000-level
(or higher) MATH courses
(without second digit 5); or
EECS3101 3.00

Systems Courses
EECS4201 3.00 Computer Architecture General prerequisites,

EECS3201 4.00, EECS3221 3.00
EECS4210 3.00 Architecture and Hardware for
Digital Signal Processing

General prerequisites,
EECS3201 4.00, EECS3451 4.00
or LE/EECS 3602 4.00

EECS4211 3.00 Performance Evaluation of
Computer Systems

General prerequisites,
MATH2030 3.00, EECS3213 3.00

EECS4214 4.00 Digital Communications General prerequisites,
EECS3213 3.00; MATH2030 3.00
or SC/MATH 2930 3.00; one of
EECS3451 4.00, LE/EECS 3602
4.00, SC/MATH 4830 3.00,
SC/PHYS 4060 3.00, EATS 4020
3.00, PHYS 4250 3.00

EECS4215 3.00 Mobile Communications General prerequisites,
EECS3213 3.00

EECS4221 3.00 Operating System Design General prerequisites,
EECS3221 3.00

Software Courses
EECS4301 3.00 Programming Language
Design

General prerequisites, EECS3301
3.00

EECS4302 3.00 Compilers and Interpreters General prerequisites, EECS2011
3.00; EECS3301 3.00
recommended

EECS4311 3.00 System Development General prerequisites, EECS3311
3.00 or EECS3221 3.00

EECS4312 3.00 Software Engineering
Requirements

General prerequisites, EECS3311
3.00

EECS4313 3.00 Software Engineering Testing General prerequisites, EECS3311
3.00

EECS4314 3.00 Advanced Software
Engineering

General prerequisites, EECS3311
3.00

 135

EECS4315 3.00 Mission-Critical Systems General prerequisites, EECS3342
3.00

EECS4351 3.00 Real-Time Systems Theory General prerequisites, EECS3221
3.00

EECS4352 3.00 Real-Time Systems Practice General prerequisites, EECS3221
3.00

Applications Courses
EECS4401 3.00 Artificial Intelligence General prerequisites, EECS3401

3.00
EECS4402 3.00 Logic Programming General prerequisites, EECS3401

3.00, one of EECS3101 3.00 or
EECS3342 3.00

EECS4403 3.00 Soft Computing General prerequisites, EECS2011
3.00, EECS2031 3.00

EECS4404 3.00 Introduction to Machine
Learning and Pattern Recognition

General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
MATH2030 3.00 or MATH1131
3.00

EECS4411 3.00 Database Management
 Systems

General prerequisites, EECS2011
3.00, EECS2021 4.00, EECS2031
3.00, EECS3421 3.00

EECS4412 3.00 Data Mining EECS3101 3.00, EECS3421 3.00,
and one of MATH2030 3.00 or
MATH1131 3.00

EECS4413 3.00 Building E-Commerce
 Systems

General prerequisites, EECS2011
3.00

EECS4421 3.00 Introduction to Robotics General prerequisites, MATH1025
3.00, MATH1310 3.00,
EECS2031 3.00

EECS4422 3.00 Computer Vision General prerequisites, MATH1025
3.00, MATH1310 3.00,
EECS2031 3.00

EECS4425 3.00 Introductory Computational
Bioinformatics

General prerequisites, EECS2011
3.00

EECS4431 3.00 Advanced Topics in 3D
Computer Graphics

General prerequisites, EECS2021
4.00, EECS3431 3.00
(MATH1025 3.00 by transitivity
from EECS3431 3.00)

EECS4441 3.00 Human Computer Interaction General prerequisites, EECS3461
3.00

EECS4443 3.00 Mobile User Interfaces General prerequisites, EECS3461
3.00

 136

EECS4452 3.00 Digital Signal Processing:
Theory and Applications

General prerequisites, EECS3451
4. 00 or LE/EECS 3602 4.00

EECS4461 3.00 Hypermedia and Multimedia
 Technologies

General prerequisites, EECS3461
3.00

EECS4471 3.00 Introduction to Virtual Reality General prerequisites, MATH1025
3.00, MATH1310 3.00,
EECS2021 4.00, EECS2031 3.00,
EECS3431 3.00

EECS 4481 4.00 Computer Security
Laboratory

General prerequisites, EECS3221
3.00, EECS3214 3.00

EECS 4482 3.00 Computer Security
Management: Assessment and Forensics

Any 12 university credits at the
3000 level in any discipline

EECS 4491 3.00 Simulation and Animation for
computer Games

General prerequisites, EECS3431
3.00, MATH1310 3.00
(MATH1025 3.00 by transitivity
from EECS3431 3.00)

Electrical Engineering Courses
EECS4611 4.00 Advanced Analog Integrated
Circuit Design

General prerequisites, EECS3611
4.00

EECS4612 4.00 Digital Very Large Scale
Integration

General prerequisites, EECS2200
3.00, EECS2210 3.00, EECS3201
4.00

EECS4613 4.00 Power Electronics General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
EECS2210 3.00. Co-requisite:
EECS3603 4.00

EECS4614 4.00 Electro-Optics General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
LE/EECS 3604 or SC/PHYS4020;
LE/EECS2210 or SC/PHYS3150

EECS4622 4.00 Introduction to Energy
Systems

General prerequisites,
LE/EECS2200 3.00, EECS3603
3.00, PHYS2020 3.00

EECS4641 4.00 Introduction to Medical
Devices and Biological Instruments

General prerequisites, EECS
2210 4.0, EECS 3215 4.0, BIOL
1000 3.0

EECS4642 4.00 Medical Imaging Systems General prerequisites, EECS2210
3.00, EECS3602 4.00 or
EECS3451 4.00

EECS4643 4.00 Biomedical Signal Analysis General prerequisites, EECS
3602 4.00 or EECS 4452 3.00

Directed Studies and Project Courses

 137

EECS4070 3.00 Directed Studies General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
successful completion of 24
credits in EECS major courses
and permission of course
coordinator

EECS4080 3.00 Computer Science Project General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
successful completion of 36
credits in EECS major courses
and permission of course
coordinator

EECS4088 6.00 Computer Science Capstone
Project

General prerequisites, LE/EECS
2030 3.00 or LE/EECS 1030 3.00,
successful completion of 36
credits in EECS major courses
and permission of course
coordinator

EECS4090 6.00 Software Development
Capstone Project

General prerequisites; Only open
to students in the Software
Development Stream; permission
of the coordinator; EECS3311
3.00 with a B or better,
EECS3101 3.00 and EECS3342
3.00

EECS 4480 3.00 Computer Security Project Restricted to students in the
Computer Security degree.
Successful completion of 40
EECS credits; permission of the
4080/4480 coordinator

EECS 4700 6.00 Digital Media Project Only open to students in the final
year of the Digital Media program.

 138

Degree Program Checklists

See URLs http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/
(current) or http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-
supplemental-calendars/ (archive)

http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/
http://eecs.lassonde.yorku.ca/current-students/undergrads-courses/eecs-supplemental-calendars/

	Preface
	The Department
	Office hours: 10:00 am – 4:00 pm

	Faculty
	CSAC and CEAB Accreditation
	A Note on Terminology
	Programs Offered by the Department
	The Computer Science Program
	Streams in Specialised Honours Computer Science Programs
	The Computer Security Program
	The Digital Media Program
	International Programs
	iBSc and iBA
	The International Dual Degree BSc Specialised Honours Program
	The Computer Engineering Program
	The Software Engineering Program
	The Electrical Engineering Program
	Engineering and International Development Studies Dual Degree
	Degree Requirements
	Courses on Offer in 2016-17
	Admission to Programs
	Computer Science and Computer Security Programs
	Digital Media Program
	Electrical, Computer and Software Engineering Programs
	Graduate Programs in Computer Science and in Engineering
	Professional Experience Program (PEP)
	Co-operative Education Program
	Out of Major Elective Courses - Computer Science and Computer Security Programs
	The Service Program
	Recent Academic Changes
	Student Clubs
	The Student Ombuds Service
	Computer Facilities
	Computer Use Policy
	Awards
	Academic Policies
	Concerns about Fairness
	Moving to New Program Requirements and New Prerequisites
	Appeal Procedures
	Grading System
	Courses Offered by the Department
	Course Descriptions: 1000-Level
	General Prerequisites
	Course Descriptions: 2000-Level
	Course Descriptions: 3000-Level
	Course Descriptions: 4000-Level
	Access to Courses
	Normal Order of Study
	Prerequisites for all EECS Courses
	Theory and Numerical Computation Specific Prerequisites
	Theory Courses Specific Prerequisites

	Degree Program Checklists

